
Image Acquisition Toolbox™ 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Image Acquisition Toolbox™ User’s Guide
© COPYRIGHT 2003–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2003 First printing New for Version 1.0 (Release 13+)
September 2003 Online only Revised for Version 1.1 (Release 13SP1)
June 2004 Online only Revised for Version 1.5 (Release 14)
July 2004 Online only Revised for Version 1.6 (Release 14+)
October 2004 Online only Revised for Version 1.7 (Release 14SP1)
March 2005 Online only Revised for Version 1.8 (Release 14SP2)
March 2005 Second printing Minor Revision for Version 1.8
August 2005 Third printing Minor Revision for Version 1.8
September 2005 Online only Revised for Version 1.9 (Release 14SP3)
March 2006 Fourth printing Revised for Version 1.10 (Release 2006a)
September 2006 Online only Revised for Version 2.0 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Fifth printing Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.2 (Release 2008b)

Contents

Getting Started

1
Product Overview . 1-2
Introduction . 1-2
Installation and Configuration Notes 1-3
The Image Processing Toolbox Software Required to Use
the Image Acquisition Toolbox Software 1-3

Related Products . 1-4
Supported Hardware . 1-4

Image Acquisition Tool (GUI) . 1-5

Basic Image Acquisition Procedure 1-6
Overview . 1-6
Step 1: Install Your Image Acquisition Device 1-7
Step 2: Retrieve Hardware Information 1-8
Step 3: Create a Video Input Object 1-10
Step 4: Preview the Video Stream (Optional) 1-12
Step 5: Configure Object Properties (Optional) 1-14
Step 6: Acquire Image Data . 1-17
Step 7: Clean Up . 1-21

Introduction
2

Overview . 2-2
Introduction . 2-2
Toolbox Components . 2-3
The Image Processing Toolbox Software Required to Use
the Image Acquisition Toolbox Software 2-4

The Image Acquisition Tool (GUI) . 2-4
Supported Devices . 2-4

v

Setting Up Image Acquisition Hardware 2-6
Introduction . 2-6
Setting Up Frame Grabbers . 2-6
Setting Up Generic Windows Video Acquisition Devices . . 2-7
Setting Up DCAM Devices . 2-7
Resetting Your Image Acquisition Hardware 2-7
A Note About Frame Rates and Processing Speed 2-7

Previewing Data . 2-9
Introduction . 2-9
Opening a Video Preview Window . 2-10
Stopping the Preview Video Stream 2-11
Closing a Video Preview Window . 2-12
Previewing Data in Custom GUIs . 2-12
Performing Custom Processing of Previewed Data 2-14

Using the Image Acquisition Tool GUI

3
The Image Acquisition Tool Desktop 3-2
Opening the Tool . 3-2
Parts of the Desktop . 3-2

Selecting Your Device . 3-5
Selecting a Device and Format . 3-5
Adding New Hardware . 3-6
Using a Camera File . 3-7

Setting Acquisition Parameters . 3-8
Using the Acquisition Parameters Pane 3-8
Setting Frames Per Trigger . 3-9
Setting the Color Space . 3-10
Setting Device-Specific Parameters 3-10
Logging Your Data . 3-13
Setting Up Triggering . 3-15
Setting a Region of Interest . 3-18

Previewing and Acquiring Data . 3-25
The Preview Window . 3-25

vi Contents

Previewing Data . 3-27
Acquiring Data . 3-28

Exporting Data . 3-32

Saving Image Acquisition Tool Configurations 3-34

Exporting Hardware Configurations to MATLAB 3-36

Connecting to Hardware

4
Getting Hardware Information . 4-2
Getting Hardware Information . 4-2
Determining the Device Adaptor Name 4-2
Determining the Device ID . 4-3
Determining Supported Video Formats 4-5

Creating Image Acquisition Objects 4-8
Types of Objects . 4-8
Video Input Objects . 4-8
Video Source Objects . 4-8
Creating a Video Input Object . 4-9
Specifying the Video Format . 4-11
Specifying the Selected Video Source Object 4-14
Getting Information About a Video Input Object 4-15

Configuring Image Acquisition Object Properties 4-16
About Image Acquisition Object Properties 4-16
Viewing the Values of Object Properties 4-17
Viewing the Value of a Particular Property 4-19
Getting Information About Object Properties 4-20
Setting the Value of an Object Property 4-20

Starting and Stopping a Video Input Object 4-23

Deleting Image Acquisition Objects 4-27

vii

Saving Image Acquisition Objects 4-29
Using the save Command . 4-29
Using the obj2mfile Command . 4-29

Acquiring Image Data

5
Data Logging . 5-2
Overview . 5-2
Trigger Properties . 5-3

Setting the Values of Trigger Properties 5-5
About Trigger Properties . 5-5
Specifying Trigger Type, Source, and Condition 5-5

Specifying the Trigger Type . 5-8
Comparison of Trigger Types . 5-8
Example: Using an Immediate Trigger 5-10
Example: Using a Manual Trigger 5-12
Example: Using a Hardware Trigger 5-15

Controlling Logging Parameters . 5-19
Data Logging . 5-19
Specifying Logging Mode . 5-19
Specifying the Number of Frames to Log 5-20
Determining How Much Data Has Been Logged 5-22
Determining How Many Frames Are Available 5-24
Delaying Data Logging After a Trigger 5-27
Specifying Multiple Triggers . 5-28

Waiting for an Acquisition to Finish 5-30
Using the wait Function . 5-30
Example: Blocking the Command Line Until an Acquisition
Completes . 5-31

Managing Memory Usage . 5-34
Memory Usage . 5-34
Monitoring Memory Usage . 5-34

viii Contents

Modifying the Frame Memory Limit 5-35
Freeing Memory . 5-36

Logging Image Data to Disk . 5-39
Logging Data to Disk . 5-39
Creating an AVI File Object for Logging 5-40
Example: Logging Data to Disk . 5-42

Working with Acquired Image Data

6
Overview . 6-2

Bringing Image Data into the MATLAB Workspace . . . 6-3
Overview . 6-3
Moving Multiple Frames into the Workspace 6-4
Viewing Frames in the Memory Buffer 6-6
Bringing a Single Frame into the Workspace 6-10

Working with Image Data in the MATLAB
Workspace . 6-12
Understanding Image Data . 6-12
Determining the Dimensions of Image Data 6-13
Determining the Data Type of Image Frames 6-16
Specifying the Color Space . 6-17
Viewing Acquired Data . 6-19

Retrieving Timing Information . 6-20
Introduction . 6-20
Determining When a Trigger Executed 6-20
Determining When a Frame Was Acquired 6-21
Example: Determining the Frame Delay Duration 6-22

ix

Using Events and Callbacks

7
Example: Using the Default Callback Function 7-2

Event Types . 7-4

Retrieving Event Information . 7-7
Introduction . 7-7
Event Structures . 7-7
Example: Accessing Data in the Event Log 7-9

Creating and Executing Callback Functions 7-12
Introduction . 7-12
Creating Callback Functions . 7-12
Specifying Callback Functions . 7-14
Example: Viewing a Sample Frame 7-16
Example: Monitoring Memory Usage 7-17

Using the From Video Device Block in Simulink

8
Overview . 8-2

Opening the Block Library . 8-3
Using the imaqlib Command . 8-3
Using the Simulink Library Browser 8-3

Example: Saving Video Data to a File 8-5
Introduction . 8-5
Step 1: Open the Image Acquisition Toolbox Library 8-5
Step 2: Open a Model or Create a New Model 8-6
Step 3: Drag the From Video Device Block into the
Model . 8-7

Step 4: Drag Other Blocks to Complete the Model 8-8
Step 5: Connect the Blocks . 8-9

x Contents

Step 6: Specify From Video Device Block Parameter
Values . 8-10

Step 7: Run the Simulation . 8-12

Adding Support for Additional Hardware

9
Overview . 9-2

For More Information . 9-3

Troubleshooting

10
Overview . 10-2

Troubleshooting DALSA Coreco IFC Hardware 10-3
Troubleshooting DALSA Coreco IFC Devices 10-3
Determining the Driver Version for DALSA Coreco IFC
Devices . 10-4

Troubleshooting DALSA Coreco Sapera Hardware . . . 10-5
Troubleshooting DALSA Coreco Sapera Devices 10-5
Determining the Driver Version for DALSA Coreco Sapera
Devices . 10-6

Troubleshooting Data Translation Hardware 10-7

Troubleshooting DCAM IEEE 1394 (FireWire)
Hardware . 10-8
Troubleshooting DCAM IEEE 1394 Hardware 10-8
Installing the CMU DCAM Driver . 10-9
Running the CMU Camera Demo Application 10-10

xi

Troubleshooting Hamamatsu Hardware 10-15

Troubleshooting Matrox Hardware 10-16
Troubleshooting Matrox Devices . 10-16
Determining the Driver Version for Matrox Devices 10-17

Troubleshooting QImaging Hardware 10-18
Troubleshooting QImaging Devices 10-18
Determining the Driver Version for QImaging Devices . . . 10-19

Troubleshooting National Instruments Hardware 10-20
Troubleshooting National Instruments Devices 10-20
Determining the Driver Version for National Instruments
Devices . 10-21

Troubleshooting Windows Video Hardware 10-22
Troubleshooting Windows Video Devices 10-22
Determining the Microsoft DirectX Version 10-23

Troubleshooting a Video Preview Window 10-25

Contacting The MathWorks and Using the imaqsupport
Function . 10-26

Function Reference
11

General-Purpose Objects . 11-2

Triggering . 11-3

Data . 11-3

Tools . 11-4

Getting Command-Line Function Help 11-5

xii Contents

Functions — Alphabetical List

12

Property Reference

13
Video Input Objects . 13-2
General . 13-2
Callback . 13-3
Triggering . 13-4
Acquisition Source . 13-5

Video Source Objects . 13-6

Properties — Alphabetical List

14

Examples

A
Fundamentals . A-2

Previewing . A-2

Image Acquisition Tool (GUI) . A-2

Acquiring Image Data . A-3

Working with Acquired Data . A-3

Events and Callbacks . A-3

xiii

Index

xiv Contents

1

Getting Started

The best way to learn about Image Acquisition Toolbox™ capabilities is to
look at a simple example. This chapter introduces the toolbox and illustrates
the basic steps to create an image acquisition application by implementing
a simple motion detection application. The example cross-references other
sections that provide more details about relevant concepts.

• “Product Overview” on page 1-2

• “Image Acquisition Tool (GUI)” on page 1-5

• “Basic Image Acquisition Procedure” on page 1-6

1 Getting Started

Product Overview

In this section...

“Introduction” on page 1-2
“Installation and Configuration Notes” on page 1-3
“The Image Processing Toolbox Software Required to Use the Image
Acquisition Toolbox Software” on page 1-3
“Related Products” on page 1-4
“Supported Hardware” on page 1-4

Introduction
The Image Acquisition Toolbox software is a collection of functions that
extend the capability of the MATLAB® numeric computing environment. The
toolbox supports a wide range of image acquisition operations, including:

• Acquiring images through many types of image acquisition devices, from
professional grade frame grabbers to USB-based webcams

• Viewing a preview of the live video stream

• Triggering acquisitions (includes external hardware triggers)

• Configuring callback functions that execute when certain events occur

• Bringing the image data into the MATLABworkspace

Many of the toolbox functions are MATLAB M-files. You can view the
MATLAB code for these functions using this statement:

type function_name

You can extend Image Acquisition Toolbox capabilities by writing your own
M-files, or by using the toolbox in combination with other toolboxes, such as
the Image Processing Toolbox™ software and the Data Acquisition Toolbox™
software.

1-2

Product Overview

The Image Acquisition Toolbox software also includes a Simulink® block,
called From Video Device, that you can use to bring live video data into
a model.

Installation and Configuration Notes
To determine if the Image Acquisition Toolbox software is installed on your
system, type this command at the MATLAB prompt:

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at the MathWorks
Web site (www.mathworks.com).

The Image Processing Toolbox Software Required to
Use the Image Acquisition Toolbox Software
The Image Acquisition Toolbox product, including the Image Acquisition
Tool, now requires you to have a license for the Image Processing Toolbox
product starting in R2008b.

If you already have the Image Processing Toolbox product, you do not need to
do anything.

If you do not have the Image Processing Toolbox product, the Image
Acquisition Toolbox software R2008a and earlier will continue to work. If you
want to use R2008b or future releases, and you have a current active license
for the Image Acquisition Toolbox software, you can download the Image
Processing Toolbox product for free. New customers will need to purchase
both products to use the Image Acquisition Toolbox product.

If you have any questions, please contact MathWorks customer service.

1-3

http://www.mathworks.com

1 Getting Started

Related Products
The MathWorks™ provides several products that are relevant to the kinds
of tasks you can perform with the Image Acquisition Toolbox software and
that extend the capabilities of MATLAB. For information about these related
products, see www.mathworks.com/products/imaq/related.html.

Supported Hardware
The list of hardware that the Image Acquisition Toolbox software supports
can change in each release, since hardware support is frequently added. The
MathWorks Web site is the best place to check for the most up to date listing.

To see the full list of hardware that the toolbox supports, visit the
Image Acquisition Toolbox product page at the MathWorks Web site
www.mathworks.com/products/imaq and click the Supported Hardware
link.

1-4

http://www.mathworks.com/products/imaq/related.html
http://www.mathworks.com/products/imaq

Image Acquisition Tool (GUI)

Image Acquisition Tool (GUI)
In Version 3.0 of the toolbox, the functionality of the Image Acquisition
Toolbox software is available in a desktop application. You connect directly to
your hardware in the tool and can set acquisition parameters, and preview
and acquire image data. You can log the data to MATLAB in several formats,
and also generate an AVI file, right from the tool.

To open the tool, select Start > Toolboxes > Image Acquisition > Image
Acquisition Tool from MATLAB. The tool has extensive Help in the desktop.
As you click in different panes of the user interface, the relevant Help appears
in the Image Acquisition Tool Help pane.

Most of the User’s Guide describes performing tasks using the toolbox via the
MATLAB command line. To learn how to use the desktop tool, see Chapter 3,
“Using the Image Acquisition Tool GUI”.

1-5

1 Getting Started

Basic Image Acquisition Procedure

In this section...

“Overview” on page 1-6
“Step 1: Install Your Image Acquisition Device” on page 1-7
“Step 2: Retrieve Hardware Information” on page 1-8
“Step 3: Create a Video Input Object” on page 1-10
“Step 4: Preview the Video Stream (Optional)” on page 1-12
“Step 5: Configure Object Properties (Optional)” on page 1-14
“Step 6: Acquire Image Data” on page 1-17
“Step 7: Clean Up” on page 1-21

Overview
This section illustrates the basic steps required to create an image acquisition
application by implementing a simple motion detection application. The
application detects movement in a scene by performing a pixel-to-pixel
comparison in pairs of incoming image frames. If nothing moves in the scene,
pixel values remain the same in each frame. When something moves in the
image, the application displays the pixels that have changed values.

The example highlights how you can use the Image Acquisition Toolbox
software to create a working image acquisition application with only a few
lines of code.

Note To run the sample code in this example, you must have an image
acquisition device connected to your system. The device can be a professional
grade image acquisition device, such as a frame grabber, or a generic
Microsoft® Windows® image acquisition device, such as a webcam. The code
can be used with various types of devices with only minor changes.

1-6

Basic Image Acquisition Procedure

To use the Image Acquisition Toolbox software to acquire image data, you
must perform the following basic steps.

Step Description

Step 1: Install and configure your image acquisition device
Step 2: Retrieve information that uniquely identifies your image

acquisition device to the Image Acquisition Toolbox software
Step 3: Create a video input object
Step 4: Preview the video stream (Optional)
Step 5: Configure image acquisition object properties (Optional)
Step 6: Acquire image data
Step 7: Clean up

Step 1: Install Your Image Acquisition Device
Follow the setup instructions that come with your image acquisition device.
Setup typically involves:

• Installing the frame grabber board in your computer.

• Installing any software drivers required by the device. These are supplied
by the device vendor.

• Connecting a camera to a connector on the frame grabber board.

• Verifying that the camera is working properly by running the application
software that came with the camera and viewing a live video stream.

Generic Windows image acquisition devices, such as webcams and digital
video camcorders, typically do not require the installation of a frame grabber
board. You connect these devices directly to your computer via a USB or
FireWire port.

After installing and configuring your image acquisition hardware, start
MATLAB on your computer by double-clicking the icon on your desktop. You
do not need to perform any special configuration of MATLAB to perform
image acquisition.

1-7

1 Getting Started

Step 2: Retrieve Hardware Information
In this step, you get several pieces of information that the toolbox needs to
uniquely identify the image acquisition device you want to access. You use
this information when you create an image acquisition object, described in
“Step 3: Create a Video Input Object” on page 1-10.

The following table lists this information. You use the imaqhwinfo function
to retrieve each item.

Device
Information Description

Adaptor name An adaptor is the software that the toolbox uses to
communicate with an image acquisition device via its
device driver. The toolbox includes adaptors for certain
vendors of image acquisition equipment and for particular
classes of image acquisition devices. See “Determining the
Adaptor Name” on page 1-9 for more information.

Device ID The device ID is a number that the adaptor assigns to
uniquely identify each image acquisition device with which
it can communicate. See “Determining the Device ID” on
page 1-9 for more information.

Note Specifying the device ID is optional; the toolbox
uses the first available device ID as the default.

Video format The video format specifies the image resolution (width
and height) and other aspects of the video stream. Image
acquisition devices typically support multiple video
formats. See “Determining the Supported Video Formats”
on page 1-10 for more information.

Note Specifying the video format is optional; the toolbox
uses one of the supported formats as the default.

1-8

Basic Image Acquisition Procedure

Determining the Adaptor Name
To determine the name of the adaptor, enter the imaqhwinfo function at the
MATLAB prompt without any arguments.

imaqhwinfo
ans =

InstalledAdaptors: {'dcam' 'winvideo'}
MATLABVersion: '7.4 (R2007a)'

ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

In the data returned by imaqhwinfo, the InstalledAdaptors field lists the
adaptors that are available on your computer. In this example, imaqhwinfo
found two adaptors available on the computer: 'dcam' and 'winvideo'. The
listing on your computer might contain only one adaptor name. Select the
adaptor name that provides access to your image acquisition device. For more
information, see “Determining the Device Adaptor Name” on page 4-2.

Determining the Device ID
To find the device ID of a particular image acquisition device, enter the
imaqhwinfo function at the MATLAB prompt, specifying the name of the
adaptor as the only argument. (You found the adaptor name in the first call to
imaqhwinfo, described in “Determining the Adaptor Name” on page 1-9.) In
the data returned, the DeviceIDs field is a cell array containing the device
IDs of all the devices accessible through the specified adaptor.

Note This example uses the DCAM adaptor. You should substitute the name
of the adaptor you would like to use.

info = imaqhwinfo('dcam')
info =

AdaptorDllName: [1x77 char]
AdaptorDllVersion: '2.1 (R2007a)'

AdaptorName: 'dcam'
DeviceIDs: {[1]}

1-9

1 Getting Started

DeviceInfo: [1x1 struct]

Determining the Supported Video Formats
To determine which video formats an image acquisition device supports, look
in the DeviceInfo field of the data returned by imaqhwinfo. The DeviceInfo
field is a structure array where each structure provides information about a
particular device. To view the device information for a particular device, you
can use the device ID as a reference into the structure array. Alternatively,
you can view the information for a particular device by calling the imaqhwinfo
function, specifying the adaptor name and device ID as arguments.

To get the list of the video formats supported by a device, look at
SupportedFormats field in the device information structure. The
SupportedFormats field is a cell array of strings where each string is the
name of a video format supported by the device. For more information, see
“Determining Supported Video Formats” on page 4-5.

dev_info = imaqhwinfo('dcam',1)

dev_info =

DefaultFormat: 'F7_Y8_1024x768'
DeviceFileSupported: 0

DeviceName: 'XCD-X700 1.05'
DeviceID: 1

ObjectConstructor: 'videoinput('dcam', 1)'
SupportedFormats: {'F7_Y8_1024x768' 'Y8_1024x768'}

Step 3: Create a Video Input Object
In this step you create the video input object that the toolbox uses to represent
the connection between MATLAB and an image acquisition device. Using the
properties of a video input object, you can control many aspects of the image
acquisition process. For more information about image acquisition objects, see
Chapter 4, “Connecting to Hardware”.

To create a video input object, use the videoinput function at the MATLAB
prompt. The DeviceInfo structure returned by the imaqhwinfo function
contains the default videoinput function syntax for a device in the

1-10

Basic Image Acquisition Procedure

ObjectConstructor field. For more information the device information
structure, see “Determining the Supported Video Formats” on page 1-10.

The following example creates a video input object for the DCAM adaptor.
Substitute the adaptor name of the image acquisition device available on
your system.

vid = videoinput('dcam',1,'Y8_1024x768')

The videoinput function accepts three arguments: the adaptor name,
device ID, and video format. You retrieved this information in step 2. The
adaptor name is the only required argument; the videoinput function can
use defaults for the device ID and video format. To determine the default
video format, look at the DefaultFormat field in the device information
structure. See “Determining the Supported Video Formats” on page 1-10
for more information.

Instead of specifying the video format, you can optionally specify the name of
a device configuration file, also known as a camera file. Device configuration
files are typically supplied by frame grabber vendors. These files contain
all the required configuration settings to use a particular camera with the
device. See “Using Device Configuration Files (Camera Files)” on page 4-13
for more information.

Viewing the Video Input Object Summary
To view a summary of the video input object you just created, enter the
variable name (vid) at the MATLAB command prompt. The summary
information displayed shows many of the characteristics of the object, such
as the number of frames that will be captured with each trigger, the trigger
type, and the current state of the object. You can use video input object
properties to control many of these characteristics. See “Step 5: Configure
Object Properties (Optional)” on page 1-14 for more information.

vid

Summary of Video Input Object Using 'XCD-X700 1.05'.

Acquisition Source(s): input1 is available.

Acquisition Parameters: 'input1' is the current selected source.

1-11

1 Getting Started

10 frames per trigger using the selected source.

'Y8_1024x768' video data to be logged upon START.

Grabbing first of every 1 frame(s).

Log data to 'memory' on trigger.

Trigger Parameters: 1 'immediate' trigger(s) on START.

Status: Waiting for START.

0 frames acquired since starting.

0 frames available for GETDATA.

Step 4: Preview the Video Stream (Optional)
After you create the video input object, MATLAB is able to access the image
acquisition device and is ready to acquire data. However, before you begin,
you might want to see a preview of the video stream to make sure that the
image is satisfactory. For example, you might want to change the position
of the camera, change the lighting, correct the focus, or make some other
change to your image acquisition setup.

Note This step is optional at this point in the procedure because you can
preview a video stream at any time after you create a video input object.

To preview the video stream in this example, enter the preview function
at the MATLAB prompt, specifying the video input object created in step 3
as an argument.

preview(vid)

The preview function opens a Video Preview figure window on your screen
containing the live video stream. To stop the stream of live video, you can
call the stoppreview function. To restart the preview stream, call preview
again on the same video input object.

While a preview window is open, the video input object sets the value of the
Previewing property to 'on'. If you change characteristics of the image
by setting image acquisition object properties, the image displayed in the
preview window reflects the change.

1-12

Basic Image Acquisition Procedure

The following figure shows the Video Preview window for the example.

Video Preview Window

To close the Video Preview window, click the Close button in the title bar
or use the closepreview function, specifying the video input object as an
argument.

closepreview(vid)

Calling closepreview without any arguments closes all open Video Preview
windows.

1-13

1 Getting Started

Step 5: Configure Object Properties (Optional)
After creating the video input object and previewing the video stream, you
might want to modify characteristics of the image or other aspects of the
acquisition process. You accomplish this by setting the values of image
acquisition object properties. This section

• Describes the types of image acquisition objects used by the toolbox

• Describes how to view all the properties supported by these objects, with
their current values

• Describes how to set the values of object properties

Types of Image Acquisition Objects
The toolbox uses two types of objects to represent the connection with an
image acquisition device:

• Video input objects

• Video source objects

A video input object represents the connection between MATLAB and a video
acquisition device at a high level. The properties supported by the video input
object are the same for every type of device. You created a video input object
using the videoinput function in step 3.

When you create a video input object, the toolbox automatically creates one or
more video source objects associated with the video input object. Each video
source object represents a collection of one or more physical data sources that
are treated as a single entity. The number of video source objects the toolbox
creates depends on the device and the video format you specify. At any one
time, only one of the video source objects, called the selected source, can be
active. This is the source used for acquisition. For more information about
these image acquisition objects, see “Creating Image Acquisition Objects”
on page 4-8.

Viewing Object Properties
To view a complete list of all the properties supported by a video input object
or a video source object, use the get function. To list the properties of the
video input object created in step 3, enter this code at the MATLAB prompt.

1-14

Basic Image Acquisition Procedure

get(vid)

The get function lists all the properties of the object with their current values.

General Settings:
DeviceID = 1
DiskLogger = []
DiskLoggerFrameCount = 0
EventLog = [1x0 struct]
FrameGrabInterval = 1
FramesAcquired = 0
FramesAvailable = 0
FramesPerTrigger = 10
Logging = off
LoggingMode = memory
Name = Y8_1024x768-dcam-1
NumberOfBands = 1
Previewing = on
ReturnedColorSpace = grayscale
ROIPosition = [0 0 1024 768]
Running = off
Tag =
Timeout = 10
Type = videoinput
UserData = []
VideoFormat = Y8_1024x768
VideoResolution = [1024 768]
.
.
.

To view the properties of the currently selected video source object associated
with this video input object, use the getselectedsource function in
conjunction with the get function. The getselectedsource function returns
the currently active video source. To list the properties of the currently
selected video source object associated with the video input object created in
step 3, enter this code at the MATLAB prompt.

get(getselectedsource(vid))

The get function lists all the properties of the object with their current values.

1-15

1 Getting Started

Note Video source object properties are device specific. The list of properties
supported by the device connected to your system might differ from the list
shown in this example.

General Settings:
Parent = [1x1 videoinput]
Selected = on
SourceName = input1
Tag =
Type = videosource

Device Specific Properties:
FrameRate = 15
Gain = 2048
Shutter = 2715

Setting Object Properties
To set the value of a video input object property or a video source object
property, you can use the set function or you can reference the object property
as you would a field in a structure, using dot notation.

Some properties are read only; you cannot set their values. These properties
typically provide information about the state of the object. Other properties
become read only when the object is running. To view a list of all the
properties you can set, use the set function, specifying the object as the
only argument.

To implement continuous image acquisition, the example sets the
TriggerRepeat property to Inf. To set this property using the set function,
enter this code at the MATLAB prompt.

set(vid,'TriggerRepeat',Inf);

To help the application keep up with the incoming video stream while
processing data, the example sets the FrameGrabInterval property to 5.
This specifies that the object acquire every fifth frame in the video stream.
(You might need to experiment with the value of the FrameGrabInterval
property to find a value that provides the best response with your image

1-16

Basic Image Acquisition Procedure

acquisition setup.) This example shows how you can set the value of an
object property by referencing the property as you would reference a field in a
MATLAB structure.

vid.FrameGrabInterval = 5;

To set the value of a video source object property, you must first use the
getselectedsource function to retrieve the object. (You can also get the
selected source by searching the video input object Source property for the
video source object that has the Selected property set to 'on'.)

To illustrate, the example assigns a value to the Tag property.

vid_src = getselectedsource(vid);

set(vid_src,'Tag','motion detection setup');

Step 6: Acquire Image Data
After you create the video input object and configure its properties, you can
acquire data. This is typically the core of any image acquisition application,
and it involves these steps:

• Starting the video input object — You start an object by calling the
start function. Starting an object prepares the object for data acquisition.
For example, starting an object locks the values of certain object properties
(they become read only). Starting an object does not initiate the acquiring
of image frames, however. The initiation of data logging depends on the
execution of a trigger.

The following example calls the start function to start the video input
object. Objects stop when they have acquired the requested number of
frames. Because the example specifies a continuous acquisition, you must
call the stop function to stop the object.

• Triggering the acquisition— To acquire data, a video input object must
execute a trigger. Triggers can occur in several ways, depending on how
the TriggerType property is configured. For example, if you specify an
immediate trigger, the object executes a trigger automatically, immediately
after it starts. If you specify a manual trigger, the object waits for a call
to the trigger function before it initiates data acquisition. For more
information, see Chapter 5, “Acquiring Image Data”.

1-17

1 Getting Started

In the example, because the TriggerType property is set to 'immediate'
(the default) and the TriggerRepeat property is set to Inf, the object
automatically begins executing triggers and acquiring frames of data,
continuously.

• Bringing data into the MATLAB workspace — The toolbox stores
acquired data in a memory buffer, a disk file, or both, depending on the
value of the video input object LoggingMode property. To work with this
data, you must bring it into the MATLAB workspace. To bring multiple
frames into the workspace, use the getdata function. Once the data is in
the MATLAB workspace, you can manipulate it as you would any other
data. For more information, see Chapter 6, “Working with Acquired Image
Data”.

Note The toolbox provides a convenient way to acquire a single frame of
image data that doesn’t require starting or triggering the object. See “Bringing
a Single Frame into the Workspace” on page 6-10 for more information.

Running the Example
To run the example, enter the following code at the MATLAB prompt. The
example loops until a specified number of frames have been acquired. In each
loop iteration, the example calls getdata to bring the two most recent frames
into the MATLAB workspace. To detect motion, the example subtracts one
frame from the other, creating a difference image, and then displays it. Pixels
that have changed values in the acquired frames will have nonzero values in
the difference image.

The getdata function removes frames from the memory buffer when it brings
them into the MATLAB workspace. It is important to move frames from the
memory buffer into the MATLAB workspace in a timely manner. If you do
not move the acquired frames from memory, you can quickly exhaust all the
memory available on your system.

Note The example uses functions in the Image Processing Toolbox software.

% Create video input object.

1-18

Basic Image Acquisition Procedure

vid = videoinput('dcam',1,'Y8_1024x768')

% Set video input object properties for this application.
% Note that example uses both SET method and dot notation method.
set(vid,'TriggerRepeat',Inf);
vid.FrameGrabInterval = 5;

% Set value of a video source object property.
vid_src = getselectedsource(vid);
set(vid_src,'Tag','motion detection setup');

% Create a figure window.
figure;

% Start acquiring frames.
start(vid)

% Calculate difference image and display it.
while(vid.FramesAcquired<=100) % Stop after 100 frames

data = getdata(vid,2);
diff_im = imabsdiff(data(:,:,:,1),data(:,:,:,2));
imshow(diff_im);

end

stop(vid)

1-19

1 Getting Started

The following figure shows how the example displays detected motion. In the
figure, areas representing movement are displayed.

Figure Window Displayed by Example

Image Data in the MATLAB Workspace
In the example, the getdata function returns the image frames in the variable
data as a 480-by-640-by-1-by-10 array of 8-bit data (uint8).

whos
Name Size Bytes Class

data 4-D 3072000 uint8 array
dev_info 1x1 1601 struct array
info 1x1 2467 struct array
vid 1x1 1138 videoinput object
vid_src 1x1 726 videosource object

The height and width of the array are primarily determined by the video
resolution of the video format. However, you can use the ROIPosition
property to specify values that supersede the video resolution. Devices
typically express video resolution as column-by-row; MATLAB expresses
matrix dimensions as row-by-column.

1-20

Basic Image Acquisition Procedure

The third dimension represents the number of color bands in the image.
Because the example data is a grayscale image, the third dimension is 1. For
RGB formats, image frames have three bands: red is the first, green is the
second, and blue is the third. The fourth dimension represents the number of
frames that have been acquired from the video stream.

Step 7: Clean Up
When you finish using your image acquisition objects, you can remove them
from memory and clear the MATLAB workspace of the variables associated
with these objects.

delete(vid)
clear
close(gcf)

For more information, see “Deleting Image Acquisition Objects” on page 4-27.

1-21

1 Getting Started

1-22

2

Introduction

This chapter describes the Image Acquisition Toolbox software and its
components.

• “Overview” on page 2-2

• “Setting Up Image Acquisition Hardware” on page 2-6

• “Previewing Data” on page 2-9

2 Introduction

Overview

In this section...

“Introduction” on page 2-2
“Toolbox Components” on page 2-3
“The Image Processing Toolbox Software Required to Use the Image
Acquisition Toolbox Software” on page 2-4
“The Image Acquisition Tool (GUI)” on page 2-4
“Supported Devices” on page 2-4

Introduction
The Image Acquisition Toolbox software implements an object-oriented
approach to image acquisition. Using toolbox functions, you create an
object that represents the connection between MATLAB and specific image
acquisition devices. Using properties of the object you can control various
aspects of the acquisition process, such as the amount of video data you want
to capture. Chapter 4, “Connecting to Hardware” describes how to create
objects.

Once you establish a connection to a device, you can acquire image data by
executing a trigger. In the toolbox, all image acquisition is initiated by a
trigger. The toolbox supports several types of triggers that let you control
when an acquisition takes place. For example, using hardware triggers you
can synchronize an acquisition with an external device. Chapter 5, “Acquiring
Image Data” describes how to trigger the acquisition of image data.

To work with the data you acquire, you must bring it into the MATLAB
workspace. When the frames are acquired, the toolbox stores them in a
memory buffer. The toolbox provides several ways to bring one or more frames
of data into the workspace where you can manipulate it as you would any
other multidimensional numeric array. Chapter 6, “Working with Acquired
Image Data” describes this process.

Finally, you can enhance your image acquisition application by using event
callbacks. The toolbox has defined certain occurrences, such as the triggering
of an acquisition, as events. You can associate the execution of a particular

2-2

Overview

function with a particular event. Chapter 7, “Using Events and Callbacks”
describes this process.

Toolbox Components
The toolbox uses components called hardware device adaptors to connect to
devices through their drivers. The toolbox includes adaptors that support
devices produced by several vendors of image acquisition equipment.
In addition, the toolbox includes an adaptor for generic Windows video
acquisition devices.

The following figure shows these components and their relationship.

The Image Acquisition Toolbox™ Software Components

2-3

2 Introduction

The Image Processing Toolbox Software Required to
Use the Image Acquisition Toolbox Software
The Image Acquisition Toolbox product, including the Image Acquisition
Tool, now requires you to have a license for the Image Processing Toolbox
product starting in R2008b.

If you already have the Image Processing Toolbox product, you do not need to
do anything.

If you do not have the Image Processing Toolbox product, the Image
Acquisition Toolbox software R2008a and earlier will continue to work. If you
want to use R2008b or future releases, and you have a current active license
for the Image Acquisition Toolbox software, you can download the Image
Processing Toolbox product for free. New customers will need to purchase
both products to use the Image Acquisition Toolbox product.

If you have any questions, please contact MathWorks customer service.

The Image Acquisition Tool (GUI)
In Version 3.0 of the toolbox, the functionality of the Image Acquisition
Toolbox software is available in a desktop application. You connect directly
to your hardware in the tool and can then set acquisition parameters, and
preview and acquire image data. You can log the data to MATLAB in several
formats, and also generate an AVI file, right from the tool.

To open the tool, select Start > Toolboxes > Image Acquisition > Image
Acquisition Tool from MATLAB. The tool has extensive Help in the desktop.
As you click in different panes of the user interface, the relevant Help appears
in the Image Acquisition Tool Help pane.

Most of the User’s Guide describes performing tasks using the toolbox via the
MATLAB command line. To learn how to use the desktop tool, see Chapter 3,
“Using the Image Acquisition Tool GUI”.

Supported Devices
The Image Acquisition Toolbox software includes adaptors that provide
support for several vendors of professional grade image acquisition

2-4

Overview

equipment, devices that support the IIDC 1394-based Digital Camera
Specification (DCAM), and devices that provide Windows Driver Model
(WDM) or Video for Windows (VFW) drivers, such as USB and IEEE® 1394
(FireWire, i.LINK®) Web cameras, Digital video (DV) camcorders, and TV
tuner cards. For the latest information about supported hardware, visit
the Image Acquisition Toolbox product page at the MathWorks Web site
(www.mathworks.com/products/imaq).

The DCAM specification, developed by the 1394 Trade Association, describes
a generic interface for exchanging data with IEEE 1394 (FireWire) digital
cameras that is often used in scientific applications. The toolbox’s DCAM
adaptor supports Format 7, also known as partial scan mode. The toolbox
uses the prefix F7_ to identify Format 7 video format names.

Note The toolbox supports only connections to IEEE 1394 (FireWire)
DCAM-compliant devices using the Carnegie Mellon University DCAM
driver. The toolbox is not compatible with any other vendor-supplied driver,
even if the driver is DCAM compliant.

You can add support for additional hardware by writing an adaptor. For more
information, see Chapter 9, “Adding Support for Additional Hardware”.

2-5

http://www.mathworks.com/products/imaq

2 Introduction

Setting Up Image Acquisition Hardware

In this section...

“Introduction” on page 2-6
“Setting Up Frame Grabbers” on page 2-6
“Setting Up Generic Windows Video Acquisition Devices” on page 2-7
“Setting Up DCAM Devices” on page 2-7
“Resetting Your Image Acquisition Hardware” on page 2-7
“A Note About Frame Rates and Processing Speed” on page 2-7

Introduction
To acquire image data, you must perform the setup required by your
particular image acquisition device. In a typical image acquisition setup,
an image acquisition device, such as a camera, is connected to a computer
via an image acquisition board, such as a frame grabber, or via a Universal
Serial Bus (USB) or IEEE 1394 (FireWire) port. The setup required varies
with the type of device.

After installing and configuring your image acquisition hardware, start
MATLAB on your computer by double-clicking the icon on your desktop. You
do not need to perform any special configuration of MATLAB to acquire data.

Setting Up Frame Grabbers
For frame grabbers, also known as imaging boards, setup typically involves
the following tasks:

• Installing the frame grabber in your computer

• Installing any software drivers required by the frame grabber. These are
supplied by the device vendor.

• Connecting the camera, or other image acquisition device, to a connector
on the frame grabber

• Verifying that the camera is working properly by running the application
software that came with the frame grabber and viewing a live video stream

2-6

Setting Up Image Acquisition Hardware

Setting Up Generic Windows Video Acquisition
Devices
IEEE 1394 (FireWire) and generic Windows video acquisition devices that use
Windows Driver Model (WDM) or Video for Windows (VFW) device drivers
typically require less setup. Plug the device into the USB or IEEE 1394
(FireWire) port on your computer and install the device driver provided by
the vendor.

Setting Up DCAM Devices
If you intend to access a DCAM-compliant IEEE 1394 (FireWire) camera, you
must install and configure the Carnegie Mellon University (CMU) DCAM
driver. The toolbox is not compatible with any other vendor-supplied driver,
even if the driver is DCAM compliant. See “Installing the CMU DCAM
Driver” on page 10-9 for more information.

Resetting Your Image Acquisition Hardware
To return MATLAB and your image acquisition hardware to a known state,
where no image acquisition objects exist and the hardware is not configured,
use the imaqreset function.

If you connect another image acquisition device to your system after MATLAB
is started, you can use imaqreset to make the toolbox aware of the new
hardware.

A Note About Frame Rates and Processing Speed
The frame rate describes how fast an image acquisition device provides data,
typically measured as frames per second.

Devices that support industry-standard video formats must provide frames
at the rate specified by the standard. For RS170 and NTSC, the standard
dictates a frame rate of 30 frames per second (30 Hz). The CCIR and PAL
standards define a frame rate of 25 Hz. Nonstandard devices can be configured
to operate at higher rates. Generic Windows image acquisition devices, such
as webcams, might support many different frame rates. Depending on the
device being used, the frame rate might be configurable using a device-specific
property of the image acquisition object.

2-7

2 Introduction

The rate at which the Image Acquisition Toolbox software can process images
depends on the processor speed, the complexity of the processing algorithm,
and the frame rate. Given a fast processor, a simple algorithm, and a frame
rate tuned to the acquisition setup, the Image Acquisition Toolbox software
can process data as it comes in.

2-8

Previewing Data

Previewing Data

In this section...

“Introduction” on page 2-9
“Opening a Video Preview Window” on page 2-10
“Stopping the Preview Video Stream” on page 2-11
“Closing a Video Preview Window” on page 2-12
“Previewing Data in Custom GUIs” on page 2-12
“Performing Custom Processing of Previewed Data” on page 2-14

Introduction
After you connect MATLAB to the image acquisition device (see Chapter 4,
“Connecting to Hardware”), you can view the live video stream using the
Video Preview window. Previewing the video data can help you make sure
that the image being captured is satisfactory.

For example, by looking at a preview, you can verify that the lighting and
focus are correct. If you change characteristics of the image, by using video
input object and video source object properties, the image displayed in the
Video Preview window changes to reflect the new property settings.

The following sections provide more information about using the Video
Preview window.

• “Opening a Video Preview Window” on page 2-10

• “Stopping the Preview Video Stream” on page 2-11

• “Closing a Video Preview Window” on page 2-12

Instead of using the toolbox’s Video Preview window, you can display the live
video preview stream in any Handle Graphics® image object you specify. In
this way, you can include video previewing in a GUI of your own creation. The
following sections describe this capability.

• “Previewing Data in Custom GUIs” on page 2-12

2-9

2 Introduction

• “Performing Custom Processing of Previewed Data” on page 2-14

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool now support the display
of up to 16-bit image data. The Preview window was designed to only show
8-bit data, but many cameras return 10-, 12-, 14-, or 16-bit data. The Preview
window display now supports these higher bit-depth cameras.

Opening a Video Preview Window
To open a Video Preview window, use the preview function. The Video
Preview window displays the live video stream from the device. You can only
open one preview window per device. If multiple devices are used, you can
open multiple preview windows at the same time.

The following example creates a video input object and then opens a Video
Preview window for the video input object.

vid = videoinput('winvideo');
preview(vid);

The following figure shows the Video Preview window created by this
example. The Video Preview window displays the live video stream. The size
of the preview image is determined by the value of the video input object’s
ROIPosition property. The Video Preview window displays the video data at
100% magnification (one screen pixel represents one image pixel).

In addition to the preview image, the Video Preview window includes
information about the image, such as the timestamp of the video frame, the
video resolution, and the current status of the video input object.

Note Because video formats typically express resolution as width-by-height,
the Video Preview window expresses the size of the image frame as
column-by-row, rather than the standard MATLAB row-by-column format.

2-10

Previewing Data

Stopping the Preview Video Stream
When you use the preview function to start previewing image data, the Video
Preview window displays a view of the live video stream coming from the
device. To stop the updating of the live video stream, call the stoppreview
function.

This example creates a video input object and opens a Video Preview window.
The example then calls the stoppreview function on this video input object.
The Video Preview window stops updating the image displayed and stops
updating the timestamp. The status displayed in the Video Preview window
also changes to indicate that previewing has been stopped.

vid = videoinput('winvideo');
preview(vid)
stoppreview(vid)

2-11

2 Introduction

To restart the video stream in the Video Preview window, call preview again
on the same video input object.

preview(vid)

Closing a Video Preview Window
To close a particular Video Preview window, use the closepreview function,
specifying the video input object as an argument. You do not need to stop the
live video stream displayed in the Video Preview window before closing it.

closepreview(vid)

To close all currently open Video Preview windows, use the closepreview
function without any arguments.

closepreview

Note When called without an argument, the closepreview function only
closes Video Preview windows. The closepreview function does not close any
other figure windows in which you have directed the live preview video stream.
For more information, see “Previewing Data in Custom GUIs” on page 2-12.

Previewing Data in Custom GUIs
Instead of using the toolbox’s Video Preview window, you can use the preview
function to direct the live video stream to any Handle Graphics image object.
In this way, you can incorporate the toolbox’s previewing capability in a GUI
of your own creation. (You can also perform custom processing as the live
video is displayed. For information, see “Performing Custom Processing of
Previewed Data” on page 2-14.)

To use this capability, create an image object and then call the preview
function, specifying a handle to the image object as an argument. The preview
function outputs the live video stream to the image object you specify.

The following example creates a figure window and then creates an image
object in the figure, the same size as the video frames. The example then calls
the preview function, specifying a handle to the image object.

2-12

Previewing Data

% Create a video input object.
vid = videoinput('winvideo');

% Create a figure window. This example turns off the default
% toolbar, menubar, and figure numbering.

figure('Toolbar','none',...
'Menubar', 'none',...
'NumberTitle','Off',...
'Name','My Preview Window');

% Create the image object in which you want to display
% the video preview data. Make the size of the image
% object match the dimensions of the video frames.

vidRes = get(vid, 'VideoResolution');
nBands = get(vid, 'NumberOfBands');
hImage = image(zeros(vidRes(2), vidRes(1), nBands));

% Display the video data in your GUI.

preview(vid, hImage);

When you run this example, it creates the GUI shown in the following figure.

Custom Preview

2-13

2 Introduction

Performing Custom Processing of Previewed Data
When you specify an image object to the preview function (see “Previewing
Data in Custom GUIs” on page 2-12), you can optionally also specify a function
that preview executes every time it receives an image frame.

To use this capability, follow these steps:

1 Create the function you want executed for each image frame, called the
update preview window function. For information about this function, see
“Creating the Update Preview Window Function” on page 2-14.

2 Create an image object.

3 Configure the value of the image object’s 'UpdatePreviewWindowFcn'
application-defined data to be a function handle to your update preview
window function. For more information, see “Specifying the Update
Preview Function” on page 2-16.

4 Call the preview function, specifying the handle of the image object as
an argument.

Note If you specify an update preview window function, in addition to
whatever processing your function performs, it must display the video data
in the image object. You can do this by updating the CData of the image
object with the incoming video frames. For some performance guidelines
about updating the data displayed in an image object, see Technical Solution
1-1B022.

Creating the Update Preview Window Function
When preview calls the update preview window function you specify, it passes
your function the following arguments.

Argument Description

obj Handle to the video input object being previewed

2-14

http://www.mathworks.com/support/solutions/data/1-1B022.html?solution=1-1B022
http://www.mathworks.com/support/solutions/data/1-1B022.html?solution=1-1B022

Previewing Data

Argument Description

A data structure containing the following fields:
Data Current image frame specified as an

H-by-W-by-B array, where H is the image
height and W is the image width, as
specified in the ROIPosition property, and
B is the number of color bands, as specified
in the NumberOfBands property

Resolution Text string specifying the current image
width and height, as defined by the
ROIPosition property

Status String describing the status of the video
input object

event

Timestamp String specifying the time associated with
the current image frame, in the format
hh:mm:ss:ms

himage Handle to the image object in which the data is to be
displayed

The following example creates an update preview window function that
displays the timestamp of each incoming video frame as a text label in the
custom GUI. The update preview window function uses getappdata to
retrieve a handle to the text label uicontrol object from application-defined
data in the image object. The custom GUI stores this handle to the text label
uicontrol object — see “Specifying the Update Preview Function” on page
2-16.

Note that the update preview window function also displays the video data by
updating the CData of the image object.

function mypreview_fcn(obj,event,himage)
% Example update preview window function.

% Get timestamp for frame.
tstampstr = event.Timestamp;

% Get handle to text label uicontrol.

2-15

2 Introduction

ht = getappdata(himage,'HandleToTimestampLabel');

% Set the value of the text label.
set(ht,'String',tstampstr);

% Display image data.
set(himage, 'CData', event.Data)

Specifying the Update Preview Function
To use an update preview window function, store a function handle to your
function in the 'UpdatePreviewWindowFcn' application-defined data of
the image object. The following example uses the setappdata function to
configure this application-defined data to a function handle to the update
preview window function described in “Creating the Update Preview Window
Function” on page 2-14.

This example extends the simple custom preview window created in
“Previewing Data in Custom GUIs” on page 2-12. This example adds three
push button uicontrol objects to the GUI: Start Preview, Stop Preview,
and Close Preview.

In addition, to illustrate using an update preview window function, the
example GUI includes a text label uicontrol object to display the timestamp
value. The update preview window function updates this text label each
time a framed is received. The example uses setappdata to store a handle
to the text label uicontrol object in application-defined data in the image
object. The update preview window function retrieves this handle to update
the timestamp display.

% Create a video input object.
vid = videoinput('winvideo');

% Create a figure window. This example turns off the default
% toolbar and menubar in the figure.
hFig = figure('Toolbar','none',...

'Menubar', 'none',...
'NumberTitle','Off',...
'Name','My Custom Preview GUI');

2-16

Previewing Data

% Set up the push buttons
uicontrol('String', 'Start Preview',...

'Callback', 'preview(vid)',...
'Units','normalized',...
'Position',[0 0 0.15 .07]);

uicontrol('String', 'Stop Preview',...
'Callback', 'stoppreview(vid)',...
'Units','normalized',...
'Position',[.17 0 .15 .07]);

uicontrol('String', 'Close',...
'Callback', 'close(gcf)',...
'Units','normalized',...
'Position',[0.34 0 .15 .07]);

% Create the text label for the timestamp
hTextLabel = uicontrol('style','text','String','Timestamp', ...

'Units','normalized',...
'Position',[0.85 -.04 .15 .08]);

% Create the image object in which you want to
% display the video preview data.
vidRes = get(vid, 'VideoResolution');
imWidth = vidRes(1);
imHeight = vidRes(2);
nBands = get(vid, 'NumberOfBands');
hImage = image(zeros(imHeight, imWidth, nBands));

% Specify the size of the axes that contains the image object
% so that it displays the image at the right resolution and
% centers it in the figure window.
figSize = get(hFig,'Position');
figWidth = figSize(3);
figHeight = figSize(4);
set(gca,'unit','pixels',...

'position',[((figWidth - imWidth)/2)...
((figHeight - imHeight)/2)...

imWidth imHeight]);

% Set up the update preview window function.
setappdata(hImage,'UpdatePreviewWindowFcn',@mypreview_fcn);

2-17

2 Introduction

% Make handle to text label available to update function.
setappdata(hImage,'HandleToTimestampLabel',hTextLabel);

preview(vid, hImage);

When you run this example, it creates the GUI shown in the following figure.
Each time preview receives a video frame, it calls the update preview window
function that you specified, which updates the timestamp text label in the
GUI.

Custom Preview GUI with Timestamp Text Label

2-18

3

Using the Image Acquisition
Tool GUI

• “The Image Acquisition Tool Desktop” on page 3-2

• “Selecting Your Device” on page 3-5

• “Setting Acquisition Parameters” on page 3-8

• “Previewing and Acquiring Data” on page 3-25

• “Exporting Data” on page 3-32

• “Saving Image Acquisition Tool Configurations” on page 3-34

• “Exporting Hardware Configurations to MATLAB” on page 3-36

3 Using the Image Acquisition Tool GUI

The Image Acquisition Tool Desktop

In this section...

“Opening the Tool” on page 3-2
“Parts of the Desktop” on page 3-2

Opening the Tool
The functionality of the Image Acquisition Toolbox software is now available
in a desktop application. You connect directly to your hardware in the tool
and can preview and acquire image data. You can log the data to MATLAB in
several formats, and also generate an AVI file, right from the tool.

The Image Acquisition Tool provides a desktop environment that integrates a
preview/acquisition area with Acquisition Parameters so that you can change
settings and see the changes dynamically applied to your image data.

To open the Image Acquisition Tool, do one of the following:

• Type imaqtool at the MATLAB command line.

• Select Start > Toolboxes > Image Acquisition > Image Acquisition
Tool from MATLAB.

Note The right pane in the tool is the Help pane. As you work in the tool
the Help will provide information for the part of the interface that you are
working in. If the Help is closed, you can open it be selecting Desktop >
Image Acquisition Tool Help.

Parts of the Desktop
The Image Acquisition Tool has the following panes.

3-2

The Image Acquisition Tool Desktop

• Hardware Browser – Shows the image acquisition devices currently
connected to your system. Each device is a separate node in the browser.
All of the formats the device supports are listed under the device. Each
device’s default format is indicated in parentheses. Select the device format
or camera file you want to use for the acquisition. When the format is
selected, you can then set acquisition parameters and preview your data.

3-3

3 Using the Image Acquisition Tool GUI

See “Selecting Your Device” on page 3-5 for more information about using
the Hardware Browser.

• Preview window – Use to preview and acquire image data from the
selected device format, and to export data that has been acquired in
memory to a MAT-file, the MATLAB Workspace, or to tools provided by the
Image Processing Toolbox software. See “Previewing and Acquiring Data”
on page 3-25 for more information about using the Preview window.

• Acquisition Parameters – Use these tabs to set up general acquisition
parameters, such as frames per trigger and color space, device-specific
properties, logging options, triggering options, and region of interest.
Settings you make on any tab will apply to the currently selected
device format in the Hardware Browser. See “Setting Acquisition
Parameters” on page 3-8 for more information about using the Acquisition
Parameters. Also see the Help for each tab while using the tool for more
details. When you click any tab, the help for that tab will appear in the
Image Acquisition Tool Help pane.

• Information Pane – Displays a summary of information about the
selected node in the Hardware Browser.

• Image Acquisition Tool Help – Displays Help for the pane of the desktop
that has focus. Click inside a pane for help on that area of the tool. For
the Acquisition Parameters pane, click each tab to display information
about the settings for that tab.

If the Help is closed, you can open it be selecting Desktop > Image
Acquisition Tool Help.

3-4

Selecting Your Device

Selecting Your Device

In this section...

“Selecting a Device and Format” on page 3-5
“Adding New Hardware” on page 3-6
“Using a Camera File” on page 3-7

Selecting a Device and Format
The Hardware Browser pane shows the image acquisition devices currently
connected to your system. Each device is a separate node in the browser. All
of the formats the device supports are listed under the device. Each device’s
default format is indicated in parentheses. The format information displayed
under a device comes from the device’s adaptor.

3-5

3 Using the Image Acquisition Tool GUI

Select the device format or camera file you want to use for the acquisition by
clicking its name in the tree. When the format is selected, you can then set
acquisition parameters and preview your data.

Adding New Hardware
When you open the Image Acquisition Tool, the Hardware Browser
automatically shows the image acquisition devices supported by the toolbox
that are currently connected to your system. If you plug a new device in
while the Image Acquisition Tool is open, select Tools > Refresh Image

3-6

Selecting Your Device

Acquisition Hardware to display the new device in the Hardware
Browser.

Using a Camera File
If your device supports the use of a camera file, also known as a device
configuration file, you can select it under the device name in the Hardware
Browser. For example, some frame grabbers support them.

Under the device name in theHardware Browser, you would see a node that
says Click to add camera file... if the device supports the use of camera files.

To use a camera file:

1 In the Hardware Browser, single-click the node under your device name
that says Click to add camera file....

2 In the Specify camera file dialog box, type the path and name of the file, or
click the Browse button to locate it, and then click OK.

The camera file will then become a new node under the device, similar
to any of the formats listed under a device. You can then set acquisition
parameters, preview, and acquire data using it.

Note The tool ignores hardware trigger configurations included in a
camera file. To configure hardware triggering, use the Trigger tab in the
Acquisition Parameters pane.

3-7

3 Using the Image Acquisition Tool GUI

Setting Acquisition Parameters

In this section...

“Using the Acquisition Parameters Pane” on page 3-8
“Setting Frames Per Trigger” on page 3-9
“Setting the Color Space” on page 3-10
“Setting Device-Specific Parameters” on page 3-10
“Logging Your Data” on page 3-13
“Setting Up Triggering” on page 3-15
“Setting a Region of Interest” on page 3-18

Using the Acquisition Parameters Pane
The tool allows you to set acquisition parameters directly in the desktop using
the Acquisition Parameters pane. Settings you make will apply to the
currently selected device format in the Hardware Browser.

The Acquisition Parameters pane contains the following tabs:

• General – Use to set up general acquisition parameters, such as frames
per trigger and color space.

• Device Properties – Use to view or change device-specific properties.

• Logging – Use to set up logging options, such as logging mode, which
determines whether your acquired data is logged to memory, disk, or both.
If you want to generate an AVI file of your data, use the Disk Logging
option on this tab.

• Triggering – Use to set up triggering options, such as number of triggers
and trigger type. If you want to do manual triggering using the Trigger
button, use the Trigger Type option on this tab.

• Region of Interest – Use to set a Region of Interest (ROI) if you only
want to use part of an image.

3-8

Setting Acquisition Parameters

For more detailed information about the settings on each tab, see the Help
topic for the tab while using the tool. When you click a tab, the corresponding
topic will appear in the Image Acquisition Tool Help pane.

Setting Frames Per Trigger
The Frames Per Trigger field on the General tab is used to set the number
of frames per trigger you want to acquire.

• If you want your acquisition to be a specific number of frames per trigger,
use the default of 1 frame, or use the arrows to select the number of frames
or type in the number.

• If you want to acquire frames continuously, set the Frames Per Trigger
to infinite and then use the Stop Acquisition button to stop the
acquisition, or do manual triggering using the Triggering tab.

The number of frames that will be acquired when you start an acquisition
depends on what is set in the Frames Per Trigger field on the General tab
and the Number of Triggers field on the Triggering tab. For example, if

3-9

3 Using the Image Acquisition Tool GUI

you set Frames Per Trigger to 4 and Number of Triggers to 2, the total
number of frames acquired will be 8.

Note that if you set Frames Per Trigger to infinite, you cannot set
Number of Triggers on the Triggering tab.

Note Some devices need a few frames to warm up, or may always skip the
first frame. If your device does that, change the number of frames accordingly
to adjust for that. You can also adjust for camera warm-up by using manual
triggering on the Triggering tab.

Setting the Color Space
Use Color Space on the General tab to set the color space for the selected
device format. The Returned Color Space field has three options: rgb,
YCbCr, and grayscale. The setting that is your device format’s default color
space is shown as the default. You can use the arrow to select another setting.

Additionally, if the default color space is grayscale, a value of bayer will
be available in the Returned Color Space field for some devices, and the
Bayer Sensor Alignment field will also be displayed. Use the drop-down
list to select one of the four possible sensor alignments. This feature allows
the tool to demosaic Bayer patterns returned by the hardware and interpolate
them into standard RGB color images. For more information about this
feature, see the BayerSensorAlignment property reference page.

Setting Device-Specific Parameters
View or change device-specific properties using the Device Properties tab.
The selected device’s properties appear in the Properties area. The specific
properties that appear depend on your device.

3-10

Setting Acquisition Parameters

The Selected source field specifies the name of the selected source for
the current device. Many device adaptors only have one input source, so
for example, this might show something like input1, port1, or input0 by
default. If your device supports multiple source names, they will appear in
the drop-down list.

Use the Properties area to view or edit properties:

• If a property has an edit box or slider, that value is editable.

• If a property has an arrow indicating a drop-down list, then you can select
a value from the list.

• If a property has a value listed that is grayed out, then that value is not
currently editable.

Changes you make in the Properties area are applied to your acquisition
or preview dynamically. For example, to change the exposure for the camera
you are using, edit the value in the Exposure property text field or use the
slider to change it. You will immediately see the change in the Preview
window if you are previewing at the time, or in the next acquisition when
you click the Start Acquisition button.

3-11

3 Using the Image Acquisition Tool GUI

Click the Reset to defaults button to undo any modifications you made and
restore the default settings of the device.

Property Help

To get help on any of the properties in the Device Properties tab, right-click
a property and select What’s This?. A Help window opens and displays the
help for the selected property, as well as the rest of the properties, which
are available by scrolling. This is the same information as the device help
you access using the imaqhelp command. For more detailed information on
device-specific properties, see your device’s documentation.

Note About Frame Rate

If FrameRate appears in the Properties area, that means your device has a
FrameRate property. The information in the table comes from your device.
The value set there will be the frame rate that your device uses, in frames
per second.

If FrameRate does not appear in the list, your device does not support that
property.

3-12

Setting Acquisition Parameters

Logging Your Data
Set logging options using the Logging tab. This determines where your data
is logged to when you do an acquisition.

Use the Log to options to select where your acquisition will be logged. Select
one of the following:

• Memory — Acquisition will be logged to memory. This means that the
acquired data that you do not otherwise save (using Export Data) will be
logged to your system’s memory, and will be available to you only during
the acquisition session. The data will be lost if you do another acquisition,
or you close the tool without exporting the data. This is the default setting.

• Disk— Acquisition will be logged to disk as an AVI file, in the location you
specify in the Disk logging area. This means that the acquired data will
be logged to disk and will be available to you there after the acquisition
session. When you select Disk, the Disk logging area becomes editable
and you can enter or browse to the location and name the file.

• Disk and memory — Acquisition will be logged to both disk, in the
location you specify in the Disk logging area, and memory.

3-13

3 Using the Image Acquisition Tool GUI

Memory Logging
If you select Memory or Disk and memory in the Log to options, the
Memory limit field will display how much memory is available on your
system.

This equals the total number of bytes that image acquisition frames can
occupy in memory. By default, the tool sets this limit to equal all available
physical memory when you first use the tool, or 1 GB, whichever is less.

Disk Logging
If you select Disk or Disk and memory in the Log to options, the Disk
logging area will become editable so you can designate a file and location to
save to.

To use disk logging:

1 Click the Browse button to select a location for the file, or type the location.

2 In the Open dialog box, enter a name in the File name field, and click
Open.

The .avi extension is appended to the name on the Logging tab, and
the other fields will become editable.

3 Optionally select Automatically increment filename if you want
the tool to name subsequent acquisitions using the same root name,
plus an incremented number. For example, if you enter the file name
experiment.avi and then check this option, it will be replaced by
experiment_0001.avi, followed by experiment_0002.avi, etc.

This option is useful if you want to acquire multiple videos of one or more
subjects. For example, a lab technician may want to acquire 10 seconds of
video on a group of five different cultures and save them for later analysis.
The technician may want resulting file names such as sample_0001.avi,
sample_0002.avi, etc.

4 Leave Compression set to the default of None, or select a compression
codec from the drop-down list to enable file compression. The compression
choices are Indeo3, Indeo5, and Cinepak for most devices. Grayscale
devices also support MSVC and RLE.

3-14

Setting Acquisition Parameters

If you select a compression codec, set the Quality and Key frames per
second fields or leave the default settings. For the Quality setting,
lowering the number results in smaller log files, but a lower quality. The
MATLAB default is 75%. The Key frames per second field determines
the ratio of frames that get compressed versus frames that just calculate
the delta from the last frame. The value of 2.14 is the MATLAB default.
Larger numbers would result in a higher image quality, but a larger log
file. The trade-off is quality of the image versus size of the log file.

5 Set your Frame Rate, which is the rate in frames per second that the
logged AVI file is displayed when you play it back. Keep the default of 15
or enter a new rate.

Setting Up Triggering
Use the Triggering tab to set up triggering options.

The total number of frames that will be acquired when you start an acquisition
depends on what is set in the Frames Per Trigger field on the General tab
and the Number of Triggers field on the Triggering tab. For example, if
you set Frames Per Trigger to 4 and Number of Triggers to 2, the total
number of frames in the acquisition will be 8.

3-15

3 Using the Image Acquisition Tool GUI

Selecting the Number of Triggers
If you want to do an acquisition that is comprised of a finite number of frames,
set the Number of Triggers to any number, or use the default of 1 trigger.

If you want to control the start and stop of the acquisition, regardless of the
number of frames acquired, select infinite. With an infinite number of
triggers, you stop the acquisition manually by clicking the Stop Acquisition
button in the Preview window.

Selecting the Trigger Type
The default of Immediate means that when you start an acquisition using the
Start Acquisition button, the acquisition begins immediately.

If you change the setting to Manual, the Trigger button is activated in the
Preview window, and you use it to start the acquisition.

To perform manual triggering:

1 Select your device format and optionally click Start Preview to preview
the device.

2 Optionally set any acquisition parameters and stop the preview.

3 Select Manual in the Trigger Type field on the Triggering tab.

4 Click the Start Acquisition button to get live feed from the device.

The Trigger button is activated in the Preview window once the
acquisition starts.

5 Click the Trigger button when you want to start logging data.

If you have a defined number of triggers (not infinite), then the acquisition
will stop when you have acquired that number of frames, based on the
Frames Per Trigger field on the General tab.

If Number of Triggers is set to infinite, use the Stop Acquisition
button to stop the acquisition.

3-16

Setting Acquisition Parameters

If your device supports hardware triggering, that option will also appear
in the Trigger Type field.

To perform hardware triggering:

1 Select your device format and optionally click Start Preview to preview
the device.

2 Optionally set any acquisition parameters and stop the preview.

3 Select Hardware in the Trigger Type field on the Triggering tab.

4 Select your Trigger Source. This indicates the hardware source that is
monitored for trigger conditions. When the condition specified in Trigger
Condition is met, the trigger is executed and the acquisition starts.
Trigger Source is device-specific. The drop-down list will show the
mechanisms your particular device uses to generate triggers. For example,
it might be something like Port0 and Port1, or OptoTrig and TTL.

5 Select your Trigger Condition. This specifies the condition that must
be met, via the Trigger Source, before a trigger event occurs. Trigger
Condition is device-specific. The drop-down list will show the conditions

3-17

3 Using the Image Acquisition Tool GUI

your particular device uses to generate triggers. For example, it might be
something like risingEdge and fallingEdge.

6 Click the Start Acquisition button to get live feed from the device.

7 When the Trigger Condition is met, the acquisition begins.

If you have a defined number of triggers (not infinite), then the acquisition
will stop when you have acquired that number of frames, based on the
Frames Per Trigger field on the General tab.

If Number of Triggers is set to infinite, use the Stop Acquisition
button to stop the acquisition.

Setting a Region of Interest
By default your acquisition will consist of the entire frame that the device
acquires, which is equal to the selected format’s resolution. If you want to
acquire a portion of the frame, use the Region of Interest tab to set the
desired region. The ROI window defines the actual size of the frame logged by
the tool, measured with respect to the top-left corner of an image frame.

You can set a Region of Interest (ROI) manually by using the Manual
Configuration settings on the Region of Interest tab, or interactively in
the Preview Window.

Setting Region of Interest Manually
To set up an ROI manually using the Manual Configuration field on the
Region of Interest tab:

1 Start your preview by clicking the Start Preview button in the Preview
Window.

2 Adjust one or more of the X-Offset, Y-Offset, Width, or Height settings
until you reach the desired region.

3-18

Setting Acquisition Parameters

Use the arrows in each field to adjust the numbers. The preview resizes
as you make changes.

3 When the region is the desired size, start your acquisition by clicking the
Start Acquisition button.

Note: You cannot adjust the ROI after starting the acquisition.

Setting Region of Interest Interactively
You can also set a region of interest interactively while previewing your image.

To set a region of interest interactively:

1 Start your preview by clicking the Start Preview button in the Preview
Window.

2 Click the Select Region of Interest button in the top-left corner of the
Preview Window to activate the interactive ROI feature.

3-19

3 Using the Image Acquisition Tool GUI

Your cursor becomes a selection tool.

Note that the Select Region of Interest button is enabled only during
preview mode.

3-20

Setting Acquisition Parameters

3 Position the cursor at one of the edges of the region you want to capture and
click the left mouse button. Hold the button while dragging the selection
tool over the image to outline the region you want to capture.

4 Release the mouse button to freeze the region.

The region is not set until you take action to commit it.

3-21

3 Using the Image Acquisition Tool GUI

5 If the selected area is the region you want to use, start your acquisition by
clicking the Start Acquisition button.

In this case, the region appears as follows.

3-22

Setting Acquisition Parameters

Before starting the acquisition, if you want to adjust the region further, you
can drag the selected region around while still in selection mode. You can
also drag any of the handles on the region outline to change the dimensions
of the region. You can then commit the region by pressing Enter or using
the right-click menu Commit Region of Interest inside the region. You

3-23

3 Using the Image Acquisition Tool GUI

can also commit a region by pressing the space bar or double-clicking inside
the selection, or starting the acquisition.

You can clear the drawn region before you commit it by single-clicking
anywhere in the Preview Window outside of the selected area. You will
still be in ROI selection mode. If you want to clear the selected region and
exit ROI selection mode, press the Delete key, press the Escape key, or
use the right-click menu Exit Region of Interest Mode inside the region.

Note: If you start another acquisition with the same device, the ROI that you
set will remain the default that is used in subsequent acquisitions. To reset to
the original image size, click the Reset Region of Interest to Maximum
button in the Preview Window or the Reset button on the Region of
Interest tab.

3-24

Previewing and Acquiring Data

Previewing and Acquiring Data

In this section...

“The Preview Window” on page 3-25
“Previewing Data” on page 3-27
“Acquiring Data” on page 3-28

The Preview Window
The Preview window displays the image data when you preview or acquire
data.

3-25

3 Using the Image Acquisition Tool GUI

Use the buttons in the Preview window to:

• Preview your image. See “Previewing Data” on page 3-27 for more
information.

3-26

Previewing and Acquiring Data

• Acquire data. See “Acquiring Data” on page 3-28 for more information.

• Export data. See “Exporting Data” on page 3-32 for more information.

• Set Region of Interest. See “Setting a Region of Interest” on page 3-18
for more information.

Below the area that displays the frames you will see text messages with
information relative to the current state of the window. For example in the
figure above, that text indicates that all the frames that were acquired are
being displayed. After you start and stop a preview, the text will indicate
that the tool is ready to acquire data.

During an acquisition, a running timer appears under the display area that
indicates the actual time of the frame acquisition.

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool now support the display
of up to 16-bit image data. The Preview window was designed to only show
8-bit data, but many cameras return 10-, 12-, 14-, or 16-bit data. The Preview
window display now supports these higher bit-depth cameras.

Previewing Data
To preview data:

1 Select the device and format in the Hardware Browser.

2 Click the Start Preview button to test your device.

3 If necessary, adjust the device to achieve the desired image.

4 Set the Frames Per Trigger on the General tab and the Number of
Triggers on the Triggering tab, to set the total number of frames for
the acquisition.

5 Set any other acquisition parameters to adjust the quality of the image
or other acquisition factors.

You are now ready to start the acquisition.

3-27

3 Using the Image Acquisition Tool GUI

Acquiring Data
To acquire data:

1 Select the device and format in the Hardware Browser. The Hardware
Browser shows the image acquisition devices currently connected to your
system. If the device you want to use is not connected to your system, plug
it in and then select Tools > Refresh Image Acquisition Hardware to
display the new device in the Hardware Browser.

The nodes listed under the device name are the formats the device supports.
They may correspond to the different resolutions and color spaces that your
device supports, or to different video standards or camera configurations.
This information comes from your device adaptor. Select the format you
want to use.

See “Selecting Your Device” on page 3-5 for more information about devices
and formats.

2 Use the Preview feature to test and set up your device by clicking the Start
Preview button. If necessary, physically adjust the device to achieve the
desired image area, or use the Region of Interest tab of the Acquisition
Parameters pane to constrain the image.

See “Previewing Data” on page 3-27 for more information on previewing.

3 Set the Frames Per Trigger on the General tab and the Number of
Triggers on the Triggering tab, to set the total number of frames for the
acquisition, if you did not do so while previewing.

For example, if you set Frames Per Trigger to 4 and Number of
Triggers to 2, the total number of frames acquired will be 8.

If you just want a snapshot of one frame, leave the default settings of 1 in
both fields. If you want a specific number of frames, use the fields to set it.

Alternatively, you can set the tool to acquire continuously and use
the buttons in the Preview window to manually start and stop the
acquisition.

3-28

Previewing and Acquiring Data

4 Set any necessary acquisition parameters if you did not do so while
previewing. See “Setting Acquisition Parameters” on page 3-8 for more
information.

5 Choose your log mode, which determines where the acquisition data is
stored.

On the Logging tab, use the Log To field to choose to log to memory, disk,
or both. Disk logging results in a saved AVI file. If you choose memory
logging, you can export your data after the acquisition using the Export
Data button on the Preview window.

For more information about logging, see “Logging Your Data” on page 3-13.

6 Start the acquisition by clicking the Start Acquisition button.

• If you set Trigger Type (on the Triggering tab) to Immediate, the tool
will immediately start logging data.

• If you set Trigger Type to Manual, click the Trigger button when
you want to start logging data. For more information about manual
triggering, see “Setting Up Triggering” on page 3-15.

7 Stop the acquisition:

• If you set Frames Per Trigger (on the General tab) to 1 or any
other number, your acquisition will stop when that number of frames
is reached.

• If you set Frames Per Trigger to infinite, click the Stop Acquisition
button to stop the acquisition.

Note that you can also click Stop Acquisition to abort an acquisition if
the number of frames was specified.

When the acquisition stops, if you logged to memory or disk and memory, the
Preview window will display all or some of the frames of the acquisition.
The window can show up to nine frames. If you acquire more than nine
frames, it will display frames at an even interval based on the total number of
frames. The montage of nine frames are indexed linearly from the acquired
images. The text under the images will list which frames are shown. You can
also hover your cursor over each frame to see which frame number it is, as
shown in the following figure.

3-29

3 Using the Image Acquisition Tool GUI

3-30

Previewing and Acquiring Data

If Images Are Blurry or Dark
If the first one or more frames of your acquisition are blurry, black, or of low
quality, your camera may need to warm up before you capture frames.

You can allow for device warm-up by using manual triggering. This allows
you to start the acquisition after the device has warmed up and is acquiring
image data that meets your needs.

To use manual triggering, go to the Triggering tab of the Acquisition
Parameters pane and select Manual in the Trigger Type field.

For more detailed instructions about manual triggering, see “Selecting the
Trigger Type” on page 3-16.

For more information about troubleshooting specific devices, see “Overview”
on page 10-2 in the Troubleshooting chapter.

3-31

3 Using the Image Acquisition Tool GUI

Exporting Data
You can export the data that has been acquired in memory to a MAT-file, the
MATLAB Workspace, or other options.

To export the acquisition data:

1 Click the Export Data button in the Preview window to export the last
acquisition that was logged to memory.

2 In the Data Exporter dialog box, select MAT-File or MATLAB Workspace
in the Data Destination field. In addition, you can choose Image
Tool or Image File for single-frame acquisitions or Movie Player for
multiple-frame acquisitions. These three options are provided by the Image
Processing Toolbox software.

3 In the Variable Name field, enter a name for the new variable, and click
OK.

3-32

Exporting Data

4 If you exported to the MATLAB Workspace, the dialog box closes and the
data will be saved to the MATLAB Workspace.

If you are exporting to a MAT-file, the Export to MAT-File dialog box opens.
Select the save location and type a file name, and then click Save.

If you exported to Image Tool, Image File, or Movie Player, the frame(s)
acquired immediately open in that tool.

Note that this export is to a MAT-file, the MATLAB Workspace, or one of
the tools mentioned in step 2. To export image data to an AVI file, use the
disk logging feature on the Logging tab of the Acquisition Parameters
pane. For more detailed instructions about disk logging, see the Help for the
Logging tab. (Click that tab to see the topic in the Help pane.)

3-33

3 Using the Image Acquisition Tool GUI

Saving Image Acquisition Tool Configurations
You can save the configuration information about any of your device formats.
This includes any parameters you set on any of the tabs in the Acquisition
Parameters pane. Then when you return to the tool, you can load the
configuration so that you do not have to reset those parameters.

To save a configuration:

1 Select File > Save Configuration.

The Save Configuration dialog box opens.

2 Decide what configuration(s) to save.

The Save Configuration dialog box lists the currently selected device
format, as well as any others you selected in the Hardware Browser
during the tool session. All formats are selected by default, meaning their
configurations will be saved. If you do not want to save a configuration,
clear it from the list.

3 Click Save.

The Save File dialog box opens.

4 Enter a file name and click Save.

3-34

Saving Image Acquisition Tool Configurations

The configuration is saved to an Image Acquisition Tool (IAT) file in the
location you specified.

You can then open the saved configuration file in a future tool session by
selecting File > Open Configuration. In the Open Configuration dialog box,
browse to an IAT file and click Open.

Note You can also export hardware configuration information to other
formats such as an M-file or a MAT-file that can be accessed from MATLAB.
See “Exporting Hardware Configurations to MATLAB” on page 3-36.

3-35

3 Using the Image Acquisition Tool GUI

Exporting Hardware Configurations to MATLAB
You can export the video input objects and their configured parameters from
the tool to a choice of multiple formats. You can then access the video object
in MATLAB.

To export a hardware configuration:

1 Select File > Export Hardware Configuration.

The Object Exporter dialog box opens.

2 Select the file format from the Object destination list.

• MATLAB Workspace saves the video input object to the MATLAB
Workspace for the duration of the MATLAB session. (You can then save
it before exiting MATLAB if you want to retain it.)

• M-File is the same as the File > Generate M-File command. It
generates an M-file containing the video input object and its configured
parameters. You could then incorporate the M-file into other MATLAB
code or projects.

• MAT-File saves the video input object and its parameters to a MAT-file.

3-36

Exporting Hardware Configurations to MATLAB®

3 Decide what object configuration(s) to export.

The Object Exporter dialog box lists the currently selected device format, as
well as any others you selected in the Hardware Browser during the tool
session. All formats are selected by default, meaning their configurations
will be saved. If you do not want to save a configuration, clear it from the
list.

4 Click Save.

If you exported to the MATLAB Workspace, the dialog box closes and the
data is saved to the MATLAB Workspace.

5 If you export to a MAT-file or M-file, an Export dialog box opens. Select the
save location and type a file name, and then click Save.

Note You can also save configuration information to an Image Acquisition
Tool (IAT) file that can then be loaded in the tool in a future session. See
“Saving Image Acquisition Tool Configurations” on page 3-34.

3-37

3 Using the Image Acquisition Tool GUI

3-38

4

Connecting to Hardware

To connect to an image acquisition device from within MATLAB, you must
create a video input object. This object represents the connection between
MATLAB and the device. You can use object properties to control various
aspects of the acquisition. Before you can create the object, you need several
pieces of information about the device that you want to connect to.

This chapter describes tasks related to establishing a connection between
MATLAB and an image acquisition device. For information about connecting
to an image acquisition device from a Simulink model, see Chapter 8, “Using
the From Video Device Block in Simulink”.

• “Getting Hardware Information” on page 4-2

• “Creating Image Acquisition Objects” on page 4-8

• “Configuring Image Acquisition Object Properties” on page 4-16

• “Starting and Stopping a Video Input Object” on page 4-23

• “Deleting Image Acquisition Objects” on page 4-27

• “Saving Image Acquisition Objects” on page 4-29

4 Connecting to Hardware

Getting Hardware Information

In this section...

“Getting Hardware Information” on page 4-2
“Determining the Device Adaptor Name” on page 4-2
“Determining the Device ID” on page 4-3
“Determining Supported Video Formats” on page 4-5

Getting Hardware Information
To access an image acquisition device, the toolbox needs several pieces of
information:

• The name of the adaptor the toolbox uses to connect to the image
acquisition device

• The device ID of the device you want to access

• The video format of the video stream or, optionally, a device configuration
file (camera file)

You use the imaqhwinfo function to retrieve this information, as described
in the following subsections.

Note When using imaqhwinfo to get information about a device, especially
devices that use a Video for Windows (VFW) driver, you might encounter
dialog boxes reporting an assertion error. Make sure that the software drivers
are installed correctly and that the acquisition device is connected to the
computer.

Determining the Device Adaptor Name
An adaptor is the software the toolbox uses to communicate with an image
acquisition device via its device driver. The toolbox includes adaptors for some
vendors of image acquisition equipment and for particular classes of image
acquisition devices. For the latest information about supported hardware,

4-2

Getting Hardware Information

visit the Image Acquisition Toolbox product page at the MathWorks Web site
(www.mathworks.com/products/imaq).

To determine which adaptors are available on your system, call the
imaqhwinfo function. The imaqhwinfo function returns information about
the toolbox software and lists the adaptors available on the system in the
InstalledAdaptors field. In this example, there are two adaptors available
on the system.

imaqhwinfo
ans =

InstalledAdaptors: {'matrox' 'winvideo'}
MATLABVersion: '7.4 (R2007a)'

ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

Note While every adaptor supported by the Image Acquisition Toolbox
software is installed with the toolbox, imaqhwinfo lists only adaptors in
the InstalledAdaptors field that are loadable. That is, the device drivers
required by the vendor are installed on the system. Note, however, that
inclusion in the InstalledAdaptors field does not necessarily mean that
an adaptor is connected to a device.

Determining the Device ID
The adaptor assigns a unique number to each device with which it can
communicate. The adaptor assigns the first device it detects the device ID
1, the second it detects the device ID 2, and so on.

To find the device ID of a particular image acquisition device, call the
imaqhwinfo function, specifying the name of the adaptor as the only
argument. When called with this syntax, imaqhwinfo returns a structure
containing information about all the devices available through the specified
adaptor.

In this example, the imaqhwinfo function returns information about all the
devices available through the Matrox® adaptor.

4-3

http://www.mathworks.com/products/imaq

4 Connecting to Hardware

info = imaqhwinfo('matrox');
info =

AdaptorDllName: [1x73 char]
AdaptorDllVersion: '2.1 (R2007a)'

AdaptorName: 'matrox'
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

The fields in the structure returned by imaqhwinfo provide the following
information.

Field Description

AdaptorDllName Text string that identifies the name of the adaptor
dynamic link library (DLL)

AdaptorDllVersion Information about the version of the adaptor DLL
AdaptorName Name of the adaptor
DeviceIDs Cell array containing the device IDs of all the

devices accessible through this adaptor
DeviceInfo Array of device information structures. See

“Getting More Information About a Particular
Device” on page 4-4 for more information.

Getting More Information About a Particular Device
If an adaptor provides access to multiple devices, you might need to find out
more information about the devices before you can select a device ID. The
DeviceInfo field is an array of device information structures. Each device
information structure contains detailed information about a particular device
available through the adaptor.

To view the information for a particular device, you can use the device ID as a
reference into the DeviceInfo structure array. Call imaqhwinfo again, this
time specifying a device ID as an argument.

dev_info = imaqhwinfo('matrox',1)

dev_info =

4-4

Getting Hardware Information

DefaultFormat: 'M_RS170'
DeviceFileSupported: 1

DeviceName: 'Orion'
DeviceID: 1

ObjectConstructor: 'videoinput('matrox', 1)'
SupportedFormats: {1x10 cell}

The fields in the device information structure provide the following
information about a device.

Field Description

DefaultFormat Text string that identifies the video format used by
the device if none is specified at object creation time

DeviceFileSupported If set to 1, the device supports device configuration
files; otherwise 0. See “Using Device Configuration
Files (Camera Files)” on page 4-13 for more
information.

DeviceName Descriptive text string, assigned by the adaptor,
that identifies the device

DeviceID ID assigned to the device by the adaptor
ObjectConstructor Default syntax you can use to create a video input

object to represent this device. See “Creating
Image Acquisition Objects” on page 4-8 for more
information.

SupportedFormats Cell array of strings that identify the video
formats supported by the device. See “Determining
Supported Video Formats” on page 4-5 for more
information.

Determining Supported Video Formats
The video format specifies the characteristics of the images in the video
stream, such as the image resolution (width and height), the industry
standard used, and the size of the data type used to store pixel information.

4-5

4 Connecting to Hardware

Image acquisition devices typically support multiple video formats. You can
specify the video format when you create the video input object to represent
the connection to the device. See “Creating Image Acquisition Objects” on
page 4-8 for more information.

Note Specifying the video format is optional; the toolbox uses one of the
supported formats as the default.

To determine which video formats an image acquisition device supports, look
in the SupportedFormats field of the DeviceInfo structure returned by the
imaqhwinfo function. To view the information for a particular device, call
imaqhwinfo, specifying the device ID as an argument.

dev_info = imaqhwinfo('matrox',1)

dev_info =

DefaultFormat: 'M_RS170'
DeviceFileSupported: 1

DeviceName: 'Orion'
DeviceID: 1

ObjectConstructor: 'videoinput('matrox', 1)'
SupportedFormats: {1x10 cell}

The DefaultFormat field lists the default format selected by the toolbox. The
SupportedFormats field is a cell array containing text strings that identify
all the supported video formats. The toolbox assigns names to the formats
based on vendor-specific terminology. If you want to specify a video format
when you create an image acquisition object, you must use one of the text
strings in this cell array. See “Creating Image Acquisition Objects” on page
4-8 for more information.

celldisp(dev_info.SupportedFormats)

ans{1} =

M_RS170

ans{2} =

4-6

Getting Hardware Information

M_RS170_VIA_RGB

ans{3} =

M_CCIR

ans{4} =

M_CCIR_VIA_RGB

ans{5} =

M_NTSC

ans{6} =

M_NTSC_RGB

ans{7} =

M_NTSC_YC

ans{8} =

M_PAL

ans{9} =

M_PAL_RGB

ans{10} =

M_PAL_YC

4-7

4 Connecting to Hardware

Creating Image Acquisition Objects

In this section...

“Types of Objects” on page 4-8
“Video Input Objects” on page 4-8
“Video Source Objects” on page 4-8
“Creating a Video Input Object” on page 4-9
“Specifying the Video Format” on page 4-11
“Specifying the Selected Video Source Object” on page 4-14
“Getting Information About a Video Input Object” on page 4-15

Types of Objects
After you get information about your image acquisition hardware, described in
“Getting Hardware Information” on page 4-2, you can establish a connection
to the device by creating an image acquisition object. The toolbox uses two
types of image acquisition objects:

• Video input object

• Video source object

Video Input Objects
A video input object represents the connection between MATLAB and a video
acquisition device at a high level. You must create the video input object
using the videoinput function. See “Creating a Video Input Object” on page
4-9 for more information.

Video Source Objects
When you create a video input object, the toolbox automatically creates one or
more video source objects associated with the video input object. Each video
source object represents a collection of one or more physical data sources that
are treated as a single entity. The number of video source objects the toolbox
creates depends on the device and the video format you specify.

4-8

Creating Image Acquisition Objects

At any one time, only one of the video source objects, called the selected
source, can be active. This is the source used for acquisition. The toolbox
selects one of the video source objects by default, but you can change this
selection. See “Specifying the Selected Video Source Object” on page 4-14
for more information.

The following figure illustrates how a video input object acts as a container
for one or more video source objects.

Relationship of Video Input Objects and Video Source Objects

For example, a Matrox frame grabber device can support eight physical
connections, which Matrox calls channels. These channels can be configured in
various ways, depending upon the video format. If you specify a monochrome
video format, such as RS170, the toolbox creates eight video source objects,
one object for each of the eight channels on the device. If you specify a color
video format, such as NTSC RGB, the Matrox device uses three physical
channels to represent one RGB connection, where each physical connection
provides the red data, green data, and blue data separately. With this format,
the toolbox only creates two video source objects for the same device.

Creating a Video Input Object
To create a video input object, call the videoinput function specifying the
adaptor name, device ID, and video format. You retrieved this information
using the imaqhwinfo function (described in “Getting Hardware Information”
on page 4-2). The only required argument is the adaptor name. The toolbox
can use default values for the device ID and video format.

This example creates a video input object to represent the connection to a
Matrox image acquisition device. The imaqhwinfo function includes the

4-9

4 Connecting to Hardware

default videoinput syntax in the ObjectConstructor field of the device
information structure.

vid = videoinput('matrox');

This syntax uses the default video format listed in the DefaultFormat field of
the data returned by imaqhwinfo. You can optionally specify the video format.
See “Specifying the Video Format” on page 4-11 for more information.

Viewing a Summary of a Video Input Object
To view a summary of the characteristics of the video input object you created,
enter the variable name you assigned to the object at the command prompt.
For example, this is the summary for the object vid.

vid

The items in this list correspond to the numbered elements in the object
summary:

1 The title of the summary includes the name of the image acquisition
device this object represents. In the example, this is a Matrox Orion frame
grabber.

2 The Acquisition Source section lists the name of all the video source
objects associated with this video input object. For many objects, this list
might only contain one video source object. In the example, the Matrox

4-10

Creating Image Acquisition Objects

device supports eight physical input channels and, with the default video
format, the toolbox creates a video source object for each connection. For
an example showing the video source objects created with another video
format, see “Specifying the Video Format” on page 4-11.

3 The Acquisition Parameters section lists the values of key video input object
properties. These properties control various aspects of the acquisition,
such as the number of frames to acquire and the location where acquired
frames are stored. For information about these properties, see Chapter
5, “Acquiring Image Data”.

4 The Trigger Parameters section lists the trigger type configured for the
object and the number of times the trigger is to be executed. Trigger
execution initiates data logging, and the toolbox supports several types of
triggers. The example object is configured by default with an immediate
trigger. For more information about configuring triggers, see Chapter 5,
“Acquiring Image Data”.

5 The Status section lists the current state of the object. A video input object
can be in one of several states:

• Running or not running (stopped)

• Logging or not logging

• Previewing or not previewing

In the example, the object describes its state as Waiting for START. This
indicates it is not running. For more information about the running state,
see “Starting and Stopping a Video Input Object” on page 4-23. This section
also reports how many frames of data have been acquired and how many
frames are available in the buffer where the toolbox stores acquired frames.
For more information about these parameters, see “Controlling Logging
Parameters” on page 5-19.

Specifying the Video Format
You can optionally specify the format of the video stream when you create
a video input object as a third argument to the videoinput function. This
argument can take two forms:

• A text string specifying a video format

4-11

4 Connecting to Hardware

• A name of a device configuration file, also known as a camera file

The following sections describe these options. If you do not specify a video
format, the videoinput function uses one of the video formats supported by
the device. For Matrox and Data Translation® devices, it chooses the RS170
video format. For Windows devices, it uses the first RGB format in the list of
supported formats or, if no RGB formats are supported, the device’s default
format.

Using a Video Format String
To specify a video format as a text string, use the imaqhwinfo function to
determine the list of supported formats. The imaqhwinfo function returns
this information in the SupportedFormats field of the device information
structure. See “Determining Supported Video Formats” on page 4-5 for more
information.

In this example, each of the text strings is a video format supported by a
Matrox device.

info = imaqhwinfo('matrox');

info.DeviceInfo.SupportedFormats

ans =
Columns 1 through 4

'M_RS170' 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'

Columns 5 through 8

'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'

Columns 9 through 10

'M_PAL_RGB' 'M_PAL_YC'

For Matrox devices, the toolbox uses the RS170 format as the default. (To find
out which is the default video format, look in the DefaultFormat field of the
device information structure returned by the imaqhwinfo function.)

4-12

Creating Image Acquisition Objects

Note For Matrox devices, the M_NTSC_RGB format string represents a
component video format.

This example creates a video input object, specifying a color video format.

vid2 = videoinput('matrox', 1,'M_NTSC_RGB');

Using Device Configuration Files (Camera Files)
For some devices, you can use a device configuration file, also known as a
camera file, to specify the video format as well as other configuration settings.
Image acquisition device vendors supply these device configuration files.

Note The toolbox ignores hardware trigger configurations included in a
device configuration file. To configure a hardware trigger, you must use the
toolbox triggerconfig function. See “Example: Using a Hardware Trigger”
on page 5-15 for more information.

For example, with Matrox frame grabbers, you can download digitizer
configuration format (DCF) files, in their terminology. These files configure
their devices to support particular cameras.

Some image acquisition device vendors provide utility programs you can use
to create a device configuration file or edit an existing one. See your hardware
vendor’s documentation for more information.

To determine if your image acquisition device supports device configuration
files, check the value of the DeviceFileSupported field of the device
information structure returned by imaqhwinfo. See “Getting More
Information About a Particular Device” on page 4-4 for more information.

When you use a device configuration file, the value of the VideoFormat
property of the video input object is the name of the file, not a video format
string.

4-13

4 Connecting to Hardware

This example creates a video input object specifying a Matrox device
configuration file as an argument.

Specifying the Selected Video Source Object
When you create a video input object, the toolbox creates one or more video
source objects associated with the video input object. The number of video
source objects created depends on the device and the video format. The
Source property of the video input object lists these video source objects.

To illustrate, this example lists the video source objects associated with the
video input object vid.

get(vid,'Source')
Display Summary for Video Source Object Array:

Index: SourceName: Selected:
1 'CH0' 'on'
2 'CH1' 'off'
3 'CH2' 'off'
4 'CH3' 'off'
5 'CH4' 'off'
6 'CH5' 'off'
7 'CH6' 'off'
8 'CH7' 'off'

4-14

Creating Image Acquisition Objects

By default, the video input object makes the first video source object in the
array the selected source. To use another video source, change the value of
the SelectedSourceName property.

This example changes the currently selected video source object from CH0 to
CH1 by setting the value of the SelectedSourceName property.

vid.SelectedSourceName = 'CH1';

Note The getselectedsource function returns the video source object that is
currently selected at the time the function is called. If you change the value
of the SelectedSourceName property, you must call the getselectedsource
function again to retrieve the new selected video source object.

Getting Information About a Video Input Object
After creating a video input object, you can get information about the device
it represents using the imaqhwinfo function. When called with a video
input object as an argument, imaqhwinfo returns a structure containing
information about the object such as the name of the adaptor, name of the
device, video resolution, and details of the vendor’s device driver and version.

out = imaqhwinfo(vid)
out =

AdaptorName: 'winvideo'
DeviceName: 'IBM PC Camera'
MaxHeight: 96
MaxWidth: 128

NativeDataType: 'uint8'
TotalSources: 1

VendorDriverDescription: 'Windows WDM Compatible Driver'
VendorDriverVersion: 'DirectX 9.0'

4-15

4 Connecting to Hardware

Configuring Image Acquisition Object Properties

In this section...

“About Image Acquisition Object Properties” on page 4-16
“Viewing the Values of Object Properties” on page 4-17
“Viewing the Value of a Particular Property” on page 4-19
“Getting Information About Object Properties” on page 4-20
“Setting the Value of an Object Property” on page 4-20

About Image Acquisition Object Properties
The video input object and the video source object both support properties that
enable you to control characteristics of the video image and how it is acquired.

The video input object properties control aspects of an acquisition that are
common to all image acquisition devices. For example, you can use the
FramesPerTrigger property to specify the amount of data you want to acquire.

The video source object properties control aspects of the acquisition associated
with a particular source. The set of properties supported by a video source
object varies with each device. For example, some image acquisition devices
support properties that enable you to control the quality of the image being
produced, such as Brightness, Hue, and Saturation.

With either type of object, you can use the same toolbox functions to

• View a list of all the properties supported by the object, with their current
values

• View the value of a particular property

• Get information about a property

• Set the value of a property

4-16

Configuring Image Acquisition Object Properties

Note Three video input object trigger properties require the use of a special
configuration function. For more information, see “Setting Trigger Properties”
on page 4-22.

Viewing the Values of Object Properties
To view all the properties of an image acquisition object, with their current
values, use the get function. You can also use the inspect function to view
a list of object properties in the Property Inspector window, where you can
also edit their values.

This example uses the get function to display a list of all the properties of the
video input object vid. “Viewing the Properties of a Video Source Object” on
page 4-18 describes how to do this for video source objects.

If you do not specify a return value, the get function displays the object
properties in four categories: General Settings, Callback Function Settings,
Trigger Settings, and Acquisition Sources.

get(vid)
General Settings:

DeviceID = 1
DiskLogger = []
DiskLoggerFrameCount = 0
EventLog = [1x0 struct]
FrameGrabInterval = 1
FramesAcquired = 0
FramesAvailable = 0
FramesPerTrigger = 10
Logging = off
LoggingMode = memory
Name = M_RS170-matrox-1
NumberOfBands = 1
Previewing = off
ReturnedColorSpace = grayscale
ROIPosition = [0 0 640 480]
Running = off
Tag =
Timeout = 10

4-17

4 Connecting to Hardware

Type = videoinput
UserData = []
VideoFormat = M_RS170
VideoResolution = [640 480]

Callback Function Settings:
ErrorFcn = @imaqcallback
FramesAcquiredFcn = []
FramesAcquiredFcnCount = 0
StartFcn = []
StopFcn = []
TimerFcn = []
TimerPeriod = 1
TriggerFcn = []

Trigger Settings:
InitialTriggerTime = [0 0 0 0 0 0]
TriggerCondition = none
TriggerFrameDelay = 0
TriggerRepeat = 0
TriggersExecuted = 0
TriggerSource = none
TriggerType = immediate

Acquisition Sources:
SelectedSourceName = CH0
Source = [1x8 videosource]

Viewing the Properties of a Video Source Object
To view the properties supported by the video source object (or objects)
associated with a video input object, use the getselectedsource function to
retrieve the currently selected video source object. This example lists the
properties supported by the video source object associated with the video
input object vid. Note the device-specific properties that are included.

4-18

Configuring Image Acquisition Object Properties

Note The video source object for your device might not include device-specific
properties. For example, devices accessed with the 'winvideo' adaptor, such
as webcams, that use a Video for Windows (VFW) driver, may not provide a
way for the toolbox to programmatically query for device properties. Use the
configuration tools provided by the manufacturer to configure these devices.

get(getselectedsource(vid))
General Settings:

Parent = [1x1 videoinput]
Selected = on
SourceName = CH0
Tag =
Type = videosource

Device Specific Properties:
InputFilter = lowpass
UserOutputBit3 = off
UserOutputBit4 = off
XScaleFactor = 1
YScaleFactor = 1

Viewing the Value of a Particular Property
To view the value of a particular property of an image acquisition object, use
the get function, specifying the name of the property as an argument. You
can also access the value of the property as you would a field in a MATLAB
structure.

This example uses the get function to retrieve the value of the Previewing
property.

get(vid,'Previewing')

ans =

off

This example illustrates how to access the same property by referencing the
object as if it were a MATLAB structure.

4-19

4 Connecting to Hardware

vid.Previewing

ans =

off

Getting Information About Object Properties
To get information about a particular property, you can view the reference
page for the property in Chapter 13, “Property Reference” and Chapter 14,
“Properties — Alphabetical List”. You can also get information about a
particular property at the command line by using the propinfo or imaqhelp
functions.

The propinfo function returns a structure that contains information about
the property such as its data type, default value, and a list of all possible
values, if the property supports such a list. This example uses propinfo to
get information about the LoggingMode property.

propinfo(vid,'LoggingMode')

ans =

Type: 'string'
Constraint: 'enum'

ConstraintValue: {'memory' 'disk' 'disk&memory'}
DefaultValue: 'memory'

ReadOnly: 'whileRunning'
DeviceSpecific: 0

The imaqhelp function returns reference information about the property with
a complete description. This example uses imaqhelp to get information about
the LoggingMode property.

imaqhelp(vid,'LoggingMode')

Setting the Value of an Object Property
To set the value of a particular property of an image acquisition object, use
the set function, specifying the name of the property as an argument. You
can also assign the value to the property as you would a field in a MATLAB
structure.

4-20

Configuring Image Acquisition Object Properties

Note Because some properties are read only, only a subset of all video input
and video source properties can be set.

This example uses the set function to set the value of the LoggingMode
property.

set(vid,'LoggingMode','disk&memory')

To verify the new value of the property, use the get function.

get(vid,'LoggingMode')

ans =

disk&memory

This example sets the value of a property by assigning the value to the object
as if it were a MATLAB structure.

vid.LoggingMode = 'disk';
vid.LoggingMode

ans =

disk

Viewing a List of All Settable Object Properties
To view a list of all the properties of a video input object or video source object
that can be set, use the set function.

set(vid)

4-21

4 Connecting to Hardware

Setting Trigger Properties
The values of certain trigger properties, TriggerType, TriggerCondition,
and TriggerSource, are interrelated. For example, some TriggerCondition
values are only valid with specific values of the TriggerType property.

To ensure that you specify only valid combinations for the values of these
properties, you must use two functions:

• The triggerinfo function returns all the valid combinations of values
for the specified video input object.

• The triggerconfig function sets the values of these properties.

For more information, see “Specifying Trigger Type, Source, and Condition”
on page 5-5.

4-22

Starting and Stopping a Video Input Object

Starting and Stopping a Video Input Object
When you create a video input object, you establish a connection between
MATLAB and an image acquisition device. However, before you can acquire
data from the device, you must start the object, using the start function.

start(vid);

When you start an object, you reserve the device for your exclusive use and
lock the configuration. Thus, certain properties become read only while
running.

An image acquisition object stops running when any of the following
conditions is met:

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object. For information about these properties,
see Chapter 5, “Acquiring Image Data”.

• A run-time error occurs.

• The object’s Timeout value is reached.

• You issue the stop function.

When an object is started, the toolbox sets the object’s Running property to
'on'. When an object is not running, the toolbox sets the object’s Running
property to 'off'; this state is called stopped.

4-23

4 Connecting to Hardware

The following figure illustrates how an object moves from a running to a
stopped state.

Transitions from Running to Stopped States

The following example illustrates starting and stopping an object:

1 Create an image acquisition object — This example creates a video
input object for a webcam image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('winvideo',1);

2 Verify that the image is in a stopped state — Use the isrunning
function to determine the current state of the video input object.

isrunning(vid)

ans =

0

3 Configure properties To illustrate object states, set the video input
object’s TriggerType property to 'Manual'. To set the value of certain
trigger properties, including the TriggerType property, you must use the
triggerconfig function. See “Setting the Values of Trigger Properties”
on page 5-5 for more information.

triggerconfig(vid, 'Manual')

4-24

Starting and Stopping a Video Input Object

Configure an acquisition that takes several seconds so that you can see the
video input in logging state.

vid.FramesPerTrigger = 100;

4 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

5 Verify that the image is running but not logging—Use the isrunning
and islogging functions to determine the current state of the video input
object. With manual triggers, the video input object is in running state
after being started but does not start logging data until a trigger executes.

isrunning(vid)

ans =

1

islogging(vid)

ans =

0

6 Execute the manual trigger — Call the trigger function to execute
the manual trigger.

trigger(vid)

While the acquisition is underway, check the logging state of the video
input object.

islogging(vid)

ans =

1

4-25

4 Connecting to Hardware

After it acquires the specified number of frames, the video input object
stops running.

isrunning(vid)

ans =

0

7 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

4-26

Deleting Image Acquisition Objects

Deleting Image Acquisition Objects
When you finish using your image acquisition objects, use the delete function
to remove them from memory. After deleting them, clear the variables
that reference the objects from the MATLAB workspace by using the clear
function.

Note When you delete a video input object, all the video source objects
associated with the video input object are also deleted.

To illustrate, this example creates several video input objects and then
deletes them.

1 Create several image acquisition objects — This example creates
several video input objects for a single webcam image acquisition device,
specifying several different video formats. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);
vid2 = videoinput('winvideo',1,'RGB24_176x144');
vid3 = videoinput('winvideo',1,'YV12_352x288');

2 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

You can delete image acquisition objects one at a time, using the delete
function.

delete(vid)

4-27

4 Connecting to Hardware

You can also delete all the video input objects that currently exist in
memory in one call to delete by using the imaqfind function. The
imaqfind function returns an array of all the video input objects in memory.

imaqfind

Video Input Object Array:

Index: Type: Name:
1 videoinput RGB555_128x96-winvideo-1
2 videoinput RGB24_176x144-winvideo-1
3 videoinput YV12_352x288-winvideo-1

Nest a call to the imaqfind function within the delete function to delete
all these objects from memory.

delete(imaqfind)

Note that the variables associated with the objects remain in the workspace.

whos
Name Size Bytes Class

vid 1x1 1120 videoinput object
vid2 1x1 1120 videoinput object
vid3 1x1 1120 videoinput object
vids 1x3 1280 videoinput object

These variables are not valid image acquisition objects.

isvalid(vid)

ans =
0

To remove these variables from the workspace, use the clear command.

4-28

Saving Image Acquisition Objects

Saving Image Acquisition Objects

In this section...

“Using the save Command” on page 4-29
“Using the obj2mfile Command” on page 4-29

Using the save Command
You can save a video input object to a MAT-file just as you would any
workspace variable by using the save command. This example saves the
video input object vid to the MAT-file myvid.mat.

save myvid vid

When you save a video input object, all the video source objects associated
with the video input object are also saved.

To load an image acquisition object that was saved to a MAT-file into the
MATLAB workspace, use the load command. For example, to load vid from
MAT-file myvid.mat, use

load myvid

Note The values of read-only properties are not saved. When you load an
image acquisition object into the MATLAB workspace, read-only properties
revert to their default values. To determine if a property is read only, use the
propinfo function or read the property reference page.

Using the obj2mfile Command
Another way to save a video input object is to create an M-file that contains
the set of commands used to create the video input object and configure its
properties. You can use the obj2mfile function to create such an M-file.
When you execute the M-file, it can create a new video input object or reuses
an existing video input object, if one exists that has the same video format
and adaptor.

4-29

4 Connecting to Hardware

4-30

5

Acquiring Image Data

The core of any image acquisition application is the data acquired from the
input device. A trigger is the event that initiates the acquisition of image
frames, a process called logging. A trigger event occurs when a certain
condition is met. For some types of triggers, the condition can be the execution
of a toolbox function. For other types of triggers, the condition can be a signal
from an external source that is monitored by the image acquisition hardware.

This chapter describes how to configure and use the various triggering options
supported by the Image Acquisition Toolbox software and control other
acquisition parameters.

• “Data Logging” on page 5-2

• “Setting the Values of Trigger Properties” on page 5-5

• “Specifying the Trigger Type” on page 5-8

• “Controlling Logging Parameters” on page 5-19

• “Waiting for an Acquisition to Finish” on page 5-30

• “Managing Memory Usage” on page 5-34

• “Logging Image Data to Disk” on page 5-39

5 Acquiring Image Data

Data Logging

In this section...

“Overview” on page 5-2
“Trigger Properties” on page 5-3

Overview
When a trigger occurs, the toolbox sets the object’s Logging property to 'on'
and starts storing the acquired frames in a buffer in memory, a disk file,
or both. When the acquisition stops, the toolbox sets the object’s Logging
property to 'off'.

The following figure illustrates when an object moves into a logging state and
the relation between running and logging states.

Logging State Transitions

Note After Logging is set to 'off', it is possible that the object might still
be logging data to disk. To determine when disk logging is complete, check
the value of the DiskLoggerFrameCount property. For more information, see
“Logging Image Data to Disk” on page 5-39.

5-2

Data Logging

The following figure illustrates a group of frames being acquired from the
video stream and being logged to memory and disk.

Overview of Data Logging

Trigger Properties
The video input object supports several properties that you can use to
configure aspects of trigger execution. Some of these properties return
information about triggers. For example, to find out when the first trigger
occurred, look at the value of the InitialTriggerTime property. Other
properties enable you to control trigger behavior. For example, you use the
TriggerRepeat property to specify how many additional times an object
should execute a trigger.

The following table provides a brief description of all the trigger-related
properties supported by the video input object. For information about how to
set these properties, see “Setting the Values of Trigger Properties” on page 5-5.

Property Description

InitialTriggerTime Reports the absolute time when the first trigger
executed.

5-3

5 Acquiring Image Data

Property Description

TriggerCondition Specifies the condition that must be met for
a trigger to be executed. This property is
always set to 'none' for immediate and manual
triggers.

TriggerFcn Specifies the callback function to execute when
a trigger occurs. For more information about
callbacks, see Chapter 7, “Using Events and
Callbacks”.

TriggerFrameDelay Specifies the number of frames to skip before
logging data to memory, disk, or both. For more
information, see “Delaying Data Logging After a
Trigger” on page 5-27.

TriggerRepeat Specifies the number of additional times to
execute a trigger. If the value of TriggerRepeat
is 0 (zero), the trigger executes but is not
repeated any additional times. For more
information, see “Specifying Multiple Triggers”
on page 5-28.

TriggersExecuted Reports the number of triggers that have been
executed.

TriggerSource Specifies the source to monitor for a trigger
condition to be met. This property is always set
to 'none' for immediate and manual triggers.

TriggerType Specifies the type of trigger: 'immediate',
'manual', or 'hardware'. Use the triggerinfo
function to determine whether your image
acquisition device supports hardware triggers.

5-4

Setting the Values of Trigger Properties

Setting the Values of Trigger Properties

In this section...

“About Trigger Properties” on page 5-5
“Specifying Trigger Type, Source, and Condition” on page 5-5

About Trigger Properties
Most trigger properties can be set using the same methods you use to set any
other image acquisition object property: using the set function or referencing
the property as you would a field in a structure. For example, you can use the
set function to specify the value of the TriggerRepeat property, where vid is
a video input object created using the videoinput function.

set(vid,'TriggerRepeat',Inf)

For more information, see “Configuring Image Acquisition Object Properties”
on page 4-16.

Some trigger properties, however, are interrelated and require the use of
the triggerconfig function to set their values. These properties are the
TriggerType, TriggerCondition, and TriggerSource properties. For
example, some TriggerCondition values are only valid when the value of the
TriggerType property is 'hardware'.

Specifying Trigger Type, Source, and Condition
Setting the values of the TriggerType, TriggerSource, and
TriggerCondition properties can be a two-step process:

1 Determine valid configurations of these properties by calling the
triggerinfo function.

2 Set the values of these properties by calling the triggerconfig function.

For an example of using these functions, see “Example: Using a Hardware
Trigger” on page 5-15.

5-5

5 Acquiring Image Data

Determining Valid Configurations
To find all the valid configurations of the TriggerType, TriggerSource, and
TriggerCondition properties, use the triggerinfo function, specifying a
video input object as an argument.

config = triggerinfo(vid);

This function returns an array of structures, one structure for each valid
combination of property values. Each structure in the array is made up of
three fields that contain the values of each of these trigger properties. For
example, the structure returned for an immediate trigger always has these
values:

TriggerType: 'immediate'
TriggerCondition: 'none'

TriggerSource: 'none'

A device that supports hardware configurations might return the following
structure.

TriggerType: 'hardware'
TriggerCondition: 'risingEdge'

TriggerSource: 'TTL'

Note The text strings used as the values of the TriggerCondition and
TriggerSource properties are device specific. Your device, if it supports
hardware triggers, might support different condition and source values.

Configuring Trigger Type, Source, and Condition Properties
To set the values of the TriggerType, TriggerSource, and TriggerCondition
properties, you must use the triggerconfig function. You specify the value
of the property as an argument to the function.

For example, this code sets the values of these properties for a hardware
trigger.

triggerconfig(vid,'hardware','risingEdge','TTL')

5-6

Setting the Values of Trigger Properties

If you are specifying a manual trigger, you only need to specify the trigger
type value as an argument.

triggerconfig(vid,'manual')

You can also pass one of the structures returned by the triggerinfo function
to the triggerconfig function and set all three properties at once.

triggerconfig(vid, config(1))

See the triggerconfig function documentation for more information.

5-7

5 Acquiring Image Data

Specifying the Trigger Type

In this section...

“Comparison of Trigger Types” on page 5-8
“Example: Using an Immediate Trigger” on page 5-10
“Example: Using a Manual Trigger” on page 5-12
“Example: Using a Hardware Trigger” on page 5-15

Comparison of Trigger Types
To specify the type of trigger you want to execute, set the value of
the TriggerType property of the video input object. You must use the
triggerconfig function to set the value of this property. The following table
lists all the trigger types supported by the toolbox, with information about
when to use each type of trigger.

Comparison of Trigger Types

TriggerType
Value

TriggerSource
and
TriggerCondition
Values Description

'immediate' Always 'none' The trigger occurs automatically,
immediately after the start function
is issued. This is the default trigger
type. For more information, see
“Example: Using an Immediate
Trigger” on page 5-10.

5-8

Specifying the Trigger Type

Comparison of Trigger Types (Continued)

TriggerType
Value

TriggerSource
and
TriggerCondition
Values Description

'manual' Always 'none' The trigger occurs when you issue
the trigger function. A manual
trigger can provide more control over
image acquisition. For example,
you can monitor the video stream
being acquired, using the preview
function, and manually execute the
trigger when you observe a particular
condition in the scene. For more
information, see “Example: Using a
Manual Trigger” on page 5-12.

'hardware' Device-specific Hardware triggers are external
signals that are processed directly by
the hardware. This type of trigger
is used when synchronization with
another device is part of the image
acquisition setup or when speed is
required. A hardware device can
process an input signal much faster
than software. For more information,
see “Example: Using a Hardware
Trigger” on page 5-15.

Note Only a subset of image
acquisition devices supports
hardware triggers. To determine
the trigger types supported by your
device, see “Determining Valid
Configurations” on page 5-6.

5-9

5 Acquiring Image Data

Example: Using an Immediate Trigger
To use an immediate trigger, simply create a video input object. Immediate
triggering is the default trigger type for all video input objects. With an
immediate trigger, the object executes the trigger immediately after you start
the object running with the start command. The following figure illustrates
an immediate trigger.

Immediate Trigger

The following example illustrates how to use an immediate trigger:

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

5-10

Specifying the Trigger Type

Verify that the object has not acquired any frames.

get(vid,'FramesAcquired')
ans =

0

2 Configure properties— To use an immediate trigger, you do not have to
configure the TriggerType property because 'immediate' is the default
trigger type. You can verify this by using the triggerconfig function
to view the current trigger configuration or by viewing the video input
object’s properties.

triggerconfig(vid)
ans =

TriggerType: 'immediate'
TriggerCondition: 'none'

TriggerSource: 'none'

This example sets the value of the FramesPerTrigger property to 5. (The
default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',5)

3 Start the image acquisition object — Call the start function to start
the image acquisition object. By default, the object executes an immediate
trigger and acquires five frames of data, logging the data to a memory
buffer. After logging the specified number of frames, the object stops
running.

start(vid)

To verify that the object acquired data, view the value of the
FramesAcquired property. The object updates the value of this property as
it acquires data.

vid.FramesAcquired
ans =

5

5-11

5 Acquiring Image Data

To execute another immediate trigger, you must restart the object. Note,
however, that this deletes the data acquired by the first trigger. To execute
multiple immediate triggers, specify a value for the TriggerRepeat
property. See “Specifying Multiple Triggers” on page 5-28 for more
information.

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Example: Using a Manual Trigger
To use a manual trigger, create a video input object and set the value of the
TriggerType property to 'manual'. A video input object executes a manual
trigger after you issue the trigger function. The following figure illustrates a
manual trigger.

Manual Trigger

The following example illustrates how to use a manual trigger:

1 Create an image acquisition object — This example creates a video
input object for a webcam image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for

5-12

Specifying the Trigger Type

your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('winvideo',1);

Verify that the object has not acquired any frames.

get(vid,'FramesAcquired')
ans =
0

2 Configure properties — Set the video input object’s TriggerType
property to 'Manual'. To set the values of certain trigger properties,
including the TriggerType property, you must use the triggerconfig
function. See “Setting the Values of Trigger Properties” on page 5-5 for
more information.

triggerconfig(vid, 'Manual')

This example also sets the value of the FramesPerTrigger property to 5.
(The default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',5)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid);

The video object is now running but not logging. With manual triggers, the
video stream begins when the object starts but no frames are acquired
until the trigger executes.

isrunning(vid)

ans =

1

islogging(vid)

ans =

5-13

5 Acquiring Image Data

0

Verify that the object has still not acquired any frames.

get(vid,'FramesAcquired')
ans =
0

4 Execute the manual trigger — Call the trigger function to execute
the manual trigger.

trigger(vid)

The object initiates the acquisition of five frames. Check the
FramesAcquired property again to verify that five frames have been
acquired.

get(vid,'FramesAcquired')
ans =
5

After it acquires the specified number of frames, the video input object
stops running.

isrunning(vid)

ans =

0

To execute another manual trigger, you must first restart the video input
object. Note that this deletes the frames acquired by the first trigger. To
execute multiple manual triggers, specify a value for the TriggerRepeat
property. See “Specifying Multiple Triggers” on page 5-28 for more
information.

5 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-14

Specifying the Trigger Type

Example: Using a Hardware Trigger
To use a hardware trigger, create a video input object and set the value of the
TriggerType property to 'hardware'. You must also specify the source of the
hardware trigger and the condition type. The hardware monitors the source
you specify for the condition you specify. The following figure illustrates a
hardware trigger. For hardware triggers, the video stream does not start
until the trigger occurs.

Note Trigger sources and the conditions that control hardware triggers are
device specific. Use the triggerinfo function to determine whether your
image acquisition device supports hardware triggers and, if it does, which
conditions you can configure. Refer to the documentation that came with
your device for more detailed information about its hardware triggering
capabilities.

Hardware Trigger

The following example illustrates how to use a hardware trigger:

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for

5-15

5 Acquiring Image Data

your image acquisition device and substitute that syntax for the following
code. The device must support hardware triggers.

vid = videoinput('matrox',1);

2 Determine valid trigger property configurations — Use the
triggerinfo function to determine if your image acquisition device
supports hardware triggers, and if it does, to find out valid configurations of
the TriggerSource and TriggerCondition properties. See “Determining
Valid Configurations” on page 5-6 for more information.

In this example, triggerinfo returns the following valid trigger
configurations.

triggerinfo(vid)
Valid Trigger Configurations:

TriggerType: TriggerCondition: TriggerSource:
'immediate' 'none' 'none'
'manual' 'none' 'none'

'hardware' 'risingEdge' 'TTL'
'hardware' 'fallingEdge' 'TTL'

3 Configure properties — Configure the video input object trigger
properties to one of the valid combinations returned by triggerinfo. You
can specify each property value as an argument to the triggerconfig
function

triggerconfig(vid, 'hardware','risingEdge','TTL')

Alternatively, you can set these values by passing one of the structures
returned by the triggerinfo function to the triggerconfig function.

configs = triggerinfo(vid);
triggerconfig(vid,configs(3));

This example also sets the value of the FramesPerTrigger property to 5.
(The default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',5)

5-16

Specifying the Trigger Type

4 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object is running but not logging any data.

isrunning(vid)

ans =

1

islogging(vid)

ans =

0

The hardware begins monitoring the trigger source for the specified
condition. When the condition is met, the hardware executes a trigger
and begins providing image frames to the object. The object acquires the
number of frames specified by the FramesPerTrigger property. View the
value of the FramesAcquired property to see how much data was acquired.
The object updates the value of this property as it acquires data.

vid.FramesAcquired
ans =

5

After it executes the trigger and acquires the specified number of frames,
the video input object stops running.

isrunning(vid)

ans =

0

To execute another hardware trigger, you must first restart the video input
object. Note that this deletes the frames acquired by the first trigger. To

5-17

5 Acquiring Image Data

execute multiple triggers, specify a value for the TriggerRepeat property.
See “Specifying Multiple Triggers” on page 5-28 for more information.

5 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-18

Controlling Logging Parameters

Controlling Logging Parameters

In this section...

“Data Logging” on page 5-19
“Specifying Logging Mode” on page 5-19
“Specifying the Number of Frames to Log” on page 5-20
“Determining How Much Data Has Been Logged” on page 5-22
“Determining How Many Frames Are Available” on page 5-24
“Delaying Data Logging After a Trigger” on page 5-27
“Specifying Multiple Triggers” on page 5-28

Data Logging
The following subsections describe how to control various aspects of data
logging.

• Specifying the logging mode

• Specifying the number of frames to log

• Determining how many frames have been logged since the object was
started

• Determining how many frames are currently available in the memory
buffer

• Delaying data logging after a trigger executes

• Specifying multiple trigger executions

Specifying Logging Mode
Using the video input object LoggingMode property, you can control where the
toolbox logs acquired frames of data.

The default value for the LoggingMode property is 'memory'. In this mode,
the toolbox logs data to a buffer in memory. If you want to bring image data
into the MATLAB workspace, you must log frames to memory. The functions
provided by the toolbox to move data into the workspace all work with the

5-19

5 Acquiring Image Data

memory buffer. For more information, see “Bringing Image Data into the
MATLAB Workspace” on page 6-3.

You can also log data to a disk file by setting the LoggingMode property to
'disk' or to 'disk&memory'. By logging frames to a disk file, you create a
permanent record of the frames you acquire. For example, this code sets
the value of the LoggingMode property of the video input object vid to
'disk&memory'.

set(vid,'LoggingMode','disk&memory');

Because the toolbox stores the image frames in Audio Video Interleaved (AVI)
format, you can view the logged frames in any standard media player. For
more information, see “Logging Image Data to Disk” on page 5-39.

Specifying the Number of Frames to Log
In the Image Acquisition Toolbox software, you specify the amount of data
you want to acquire as the number of frames per trigger.

You specify the desired size of your acquisition as the value of the video input
object FramesPerTrigger property. By default, the value of this property is
10 frames per trigger, but you can specify any value. The following figure
illustrates an acquisition using the default value for the FramesPerTrigger
property. To see an example of an acquisition, see “Example: Acquiring 100
Frames” on page 5-22.

5-20

Controlling Logging Parameters

Specifying the Amount of Data to Log

Note While you can specify any size acquisition, the number of frames
you can acquire is limited by the amount of memory you have available on
your system for image storage. A large acquisition can potentially fill all
available system memory. For large acquisitions, you might want to remove
frames from the buffer as they are logged. For more information, see “Moving
Multiple Frames into the Workspace” on page 6-4. To learn how to empty the
memory buffer, see “Freeing Memory” on page 5-36.

Specifying a Noncontiguous Acquisition
Although FramesPerTrigger specifies the number of frames to acquire, these
frames do not have to be captured contiguously from the video stream. You
can specify that the toolbox skip a certain number of frames between frames
it acquires. To do this, set the value of the FrameGrabInterval property.

Note The FrameGrabInterval property controls the interval at which the
toolbox acquires frames from the video stream (measured in frames). This
property does not control the rate at which frames are provided by the device,
otherwise known as the frame rate.

5-21

5 Acquiring Image Data

The following figure illustrates how the FrameGrabInterval property affects
an acquisition.

Impact of FrameGrabInterval on Data Logging

Determining How Much Data Has Been Logged
To determine how many frames have been acquired by a video input object,
check the value of the FramesAcquired property. This property tells how
many frames the object has acquired since it was started. To determine how
many frames are currently available in the memory buffer, see “Determining
How Many Frames Are Available” on page 5-24.

Example: Acquiring 100 Frames
This example illustrates how you can specify the amount of data to be
acquired and determine how much data has been acquired. (For an example
of configuring a time-based acquisition, see “Example: Acquiring 10 Seconds
of Image Data” on page 6-5.)

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

5-22

Controlling Logging Parameters

2 Configure properties— Specify the amount of data you want to acquire
as the number of frames per trigger. By default, a video input object
acquires 10 frames per trigger. For this example, set the value of this
property to 100.

set(vid,'FramesPerTrigger',100)

3 Start the image acquisition object -— Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. To verify if the video input object is logging data, use the islogging
function.

islogging(vid)
ans =

1

The start function returns control to the command line immediately but
the object continues logging the data to the memory buffer. After acquiring
the specified number of frames, the object stops running and logging.

4 Check how many frames have been acquired — To verify that the
specified number of frames has been acquired, check the value of the
FramesAcquired property. Note that the object continuously updates the
value of the FramesAcquired property as the acquisition progresses. If you
view the value of this property several times during an acquisition, you can
see the number of frames acquired increase until logging stops.

vid.FramesAcquired
ans =

100

5 Clean up Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-23

5 Acquiring Image Data

Determining How Many Frames Are Available
The FramesAcquired property tells how many frames the object has logged
since it was started, described in “Determining How Much Data Has Been
Logged” on page 5-22. Once you move frames from the memory buffer
into the MATLAB workspace, the number of frames stored in the memory
buffer will differ from the FramesAcquired value. To determine how many
frames are currently available in the memory buffer, check the value of the
FramesAvailable property.

Note The FramesAvailable property tells the number of frames in the
memory buffer, not in the disk log, if LoggingMode is configured to 'disk' or
'disk&memory'. Because it takes longer to write frames to a disk file than
to memory, the number of frames stored in the disk log might lag behind
those stored in the memory buffer. To see how many frames are available in
the disk log, look at the value of the DiskLoggerFrameCount property. See
“Logging Image Data to Disk” on page 5-39 for more information.

This example illustrates the distinction between the FramesAcquired and the
FramesAvailable properties:

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

2 Configure properties— For this example, configure an acquisition of 15
frames.

set(vid,'FramesPerTrigger',15)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

5-24

Controlling Logging Parameters

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer. After
logging the specified number of frames, the object stops running.

4 Check how many frames have been acquired — To determine how
many frames the object has acquired and how many frames are available
in the memory buffer, check the value of the FramesAcquired and
FramesAvailable properties.

vid.FramesAcquired
ans =

15

vid.FramesAvailable

ans =

15

The object updates the value of these properties continuously as it acquires
frames of data. The following figure illustrates how the object puts acquired
frames in the memory buffer as the acquisition progresses.

Frames Available After Initial Trigger Execution

5-25

5 Acquiring Image Data

5 Remove frames from the memory buffer — When you remove
frames from the memory buffer, the object decrements the value of the
FramesAvailable property by the number of frames removed.

To remove frames from the memory buffer, call the getdata function,
specifying the number of frames to retrieve. For more information about
using getdata, see “Bringing Image Data into the MATLAB Workspace”
on page 6-3.

data = getdata(vid,5);

After you execute the getdata function, check the values of the
FramesAcquired and FramesAvailable properties again. Notice that
the FramesAcquired property remains unchanged but the object has
decremented the value of the FramesAvailable property by the number of
frames removed from the memory buffer.

vid.FramesAcquired

ans =

15

vid.FramesAvailable

ans =

10

The following figure illustrates the contents of the memory buffer after
frames are removed.

5-26

Controlling Logging Parameters

Contents of Memory Buffer Before and After Removing Frames

6 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Delaying Data Logging After a Trigger
In some image acquisition setups, you might not want to log the first few
frames returned from your camera or other imaging device. For example,
some cameras require a short warmup time when activated. The quality of
the first few images returned by these cameras might be too dark to be useful
for your application.

To account for this characteristic of your setup, you can specify that the
toolbox skip a specified number of frames after a trigger executes. You use
the TriggerFrameDelay property to specify the number of frames you want to
skip before logging begins.

For example, to specify a delay of five frames before data logging begins after a
trigger executes, you would set the value of the TriggerFrameDelay property
to 5. The number of frames captured is defined by the FramesPerTrigger
property and is unaffected by the delay.

set(vid,'TriggerFrameDelay',5);

This figure illustrates this scenario.

5-27

5 Acquiring Image Data

Specifying a Delay Before Data Logging Begins

Specifying Multiple Triggers
When a trigger occurs, a video input object acquires the number of frames
specified by the FramesPerTrigger property and logs the data to a memory
buffer, a disk file, or both.

When it acquires the specified number of frames, the video input object
stops running. To execute another trigger, you must restart the video input
object. Restarting an object causes it to delete all the data it has stored in
the memory buffer from the previous trigger. To execute multiple triggers,
retaining the data from each trigger, you must specify a value for the
TriggerRepeat property.

Note that the TriggerRepeat property specifies the number of additional
times a trigger executes. For example, to execute a trigger three times, you
would set the value of the TriggerRepeat property to 2. In the following, vid
is a video input object created with the videoinput function.

set(vid,'TriggerRepeat',2);

This figure illustrates an acquisition with three executions of a manual
trigger. In the figure, the FramesPerTrigger property is set to 3.

5-28

Controlling Logging Parameters

Executing Multiple Triggers

5-29

5 Acquiring Image Data

Waiting for an Acquisition to Finish

In this section...

“Using the wait Function” on page 5-30
“Example: Blocking the Command Line Until an Acquisition Completes”
on page 5-31

Using the wait Function
The start function and the trigger function are asynchronous functions.
That is, they start the acquisition of frames and return control to the
MATLAB command line immediately.

In some scenarios, you might want your application to wait until the
acquisition completes before proceeding with other processing. To do this, call
the wait function immediately after the start or trigger function returns.
The wait function blocks the MATLAB command line until an acquisition
completes or a timeout value expires, whichever comes first.

By default, wait blocks the command line until a video input object stops
running. You can optionally specify that wait block the command line
until the object stops logging. For acquisitions using an immediate trigger,
video input objects always stop running and stop logging at the same
time. However, with a manual trigger configured for multiple executions
(TriggerRepeat > 0), you can use wait immediately after each call to the
trigger function to block the command line while logging is in progress, even
though the object remains in running state throughout the entire acquisition.

The following figure illustrates the flow of control at the MATLAB command
line for a single execution of an immediate trigger and a manual trigger, with
and without the wait function. A hardware trigger is similar to the manual
trigger diagram, except that the acquisition is triggered by an external signal
to the camera or frame grabber board, not by the trigger function. For an
example, see “Example: Blocking the Command Line Until an Acquisition
Completes” on page 5-31.

5-30

Waiting for an Acquisition to Finish

Using wait to Block the MATLAB® Command Line

Example: Blocking the Command Line Until an
Acquisition Completes
The following example illustrates how to use the wait function to put a 60
second time limit on the execution of a hardware trigger. If the hardware
trigger does not execute within the time limit, wait returns control to the
MATLAB command line.

5-31

5 Acquiring Image Data

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

2 Configure a hardware trigger — Use the triggerinfo function
to determine valid configurations of the TriggerSource and
TriggerCondition properties. See “Determining Valid Configurations” on
page 5-6 for more information. In this example, triggerinfo returns the
following valid trigger configurations.

triggerinfo(vid)
Valid Trigger Configurations:

TriggerType: TriggerCondition: TriggerSource:
'immediate' 'none' 'none'
'manual' 'none' 'none'

'hardware' 'risingEdge' 'TTL'
'hardware' 'fallingEdge' 'TTL'

Configure the video input object trigger properties to one of the valid
combinations returned by triggerinfo. You can specify each property
value as an argument to the triggerconfig function

triggerconfig(vid, 'hardware','risingEdge','TTL')

Alternatively, you can set these values by passing one of the structures
returned by the triggerinfo function to the triggerconfig function.

configs = triggerinfo(vid);
triggerconfig(vid,configs(3));

3 Configure other object properties— This example also sets the value
of the FramesPerTrigger property to configure an acquisition large enough
to produce a noticeable duration. (The default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',100)

5-32

Waiting for an Acquisition to Finish

4 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The start function sets the object running and returns control to the
command line.

5 Block the command line until the acquisition finishes — After the
start function returns, call the wait function.

wait(vid,60)

The wait function blocks the command line until the hardware trigger
fires and acquisition completes or until the amount of time specified by
the timeout value expires.

6 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-33

5 Acquiring Image Data

Managing Memory Usage

In this section...

“Memory Usage” on page 5-34
“Monitoring Memory Usage” on page 5-34
“Modifying the Frame Memory Limit” on page 5-35
“Freeing Memory” on page 5-36

Memory Usage
The first time it needs to allocate memory to store an image frame, the toolbox
determines the total amount of memory it has available to store acquired
image frames. By default, the toolbox sets this value, called the frame memory
limit, to equal all the physical memory that is available when the toolbox
is first accessed.

Image data can require a lot of memory. For example, even a relatively small
(96-by-128) 24-bit color image requires almost 37 K bytes for each frame.

whos

Name Size Bytes Class

rgb_image 96x128x3 36864 uint8 array

Monitoring Memory Usage
The toolbox includes a utility function, called imaqmem, that provides
information about the toolbox’s current memory usage.

The imaqmem function returns a structure that contains several memory
usage statistics including the total amount of physical memory available, the
amount of physical memory currently in use, and a value, called the memory
load, that characterizes the current memory usage.

To illustrate, this example calls imaqmem and then uses the frame memory
limit and the current frame memory usage statistics to calculate how much
memory is left for image frame storage.

5-34

Managing Memory Usage

out = imaqmem;
mem_left = out.FrameMemoryLimit - out.FrameMemoryUsed;

To see an example of using a callback function to monitor memory usage, see
“Example: Monitoring Memory Usage” on page 7-17.

Modifying the Frame Memory Limit
To enable your image acquisition application to work with more image frames,
you might want to increase the frame memory limit. Using the imaqmem
function you can determine the current frame memory limit and specify a new
one. The following example illustrates this process.

1 Determine the current frame memory limit— This example calls the
imaqmem function, requesting the value of the FrameMemoryLimit field.

out = imaqmem('FrameMemoryLimit')

out =

15425536

2 Set the frame memory limit to a new value— When you call imaqmem
with a numeric argument, it sets the FrameMemoryLimit field to the value.

imaqmem(36000000)

3 Verify the frame memory limit setting — Call imaqmem again,
requesting the value of the FrameMemoryLimit field.

out = imaqmem('FrameMemoryLimit')

out =

36000000

5-35

5 Acquiring Image Data

Freeing Memory
At times, while acquiring image data, you might want to delete some or all
of the frames that are stored in memory. Using the flushdata function, you
can delete all the frames currently stored in memory or only those frames
associated with the execution of a trigger.

The following example illustrates how to use flushdata to delete all the
frames in memory or one trigger’s worth of frames.

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

2 Configure properties— For this example, configure an acquisition of five
frames per trigger and, to show the effect of flushdata, configure multiple
triggers using the TriggerRepeat property.

vid.FramesPerTrigger = 5
vid.TriggerRepeat = 2;

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger, acquires five frames of data, and
repeats this trigger two more times. After logging the specified number of
frames, the object stops running.

5-36

Managing Memory Usage

To verify that the object acquired data, view the value of the
FramesAvailable property. This property reports how many frames are
currently stored in the memory buffer.

vid.FramesAvailable
ans =

15

4 Delete a trigger’s worth of image data— Call the flushdata function,
specifying the mode 'triggers'. This deletes the frames associated with
the oldest trigger.

flushdata(vid,'triggers');

The following figure shows the frames acquired before and after the call
to flushdata. Note how flushdata deletes the frames associated with
the oldest trigger.

To verify that the object deleted the frames, view the value of the
FramesAvailable property.

vid.FramesAvailable
ans =

10

5-37

5 Acquiring Image Data

5 Empty the entire memory buffer — Calling flushdata without
specifying the mode deletes all the frames stored in memory.

flushdata(vid);

To verify that the object deleted the frames, view the value of the
FramesAvailable property.

vid.FramesAvailable
ans =

0

6 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-38

Logging Image Data to Disk

Logging Image Data to Disk

In this section...

“Logging Data to Disk” on page 5-39
“Creating an AVI File Object for Logging” on page 5-40
“Example: Logging Data to Disk” on page 5-42

Logging Data to Disk
While a video input object is running, you can log the image data being
acquired to a disk file. Logging image data to disk provides a record of your
data.

To set up data logging to disk, perform these steps:

1 Create a disk file to store the data. The toolbox logs the data to disk in
Audio Video Interleave (AVI) format because this format provides data
compression capabilities that allow for efficient storage. You must use the
MATLAB avifile function to create this log file. For more information,
see “Creating an AVI File Object for Logging” on page 5-40.

2 Set the value of the video input object LoggingMode property to 'disk' or
'disk&memory'.

3 Set the value of the video input object DiskLogger property to the AVI
file object created in step 1.

The following figure shows how the toolbox adds frames to the AVI file when
a trigger occurs. With each subsequent trigger, the toolbox appends the
acquired frames to the end of the AVI file. The frames must have the same
dimensions. For an example of how to set up disk data logging, see “Example:
Logging Data to Disk” on page 5-42.

5-39

5 Acquiring Image Data

Logging Data to a Disk File

Creating an AVI File Object for Logging
To create an AVI file in the MATLAB environment, use the avifile function.
You specify the name of the AVI file to the avifile function. For example, to
create the AVI file named my_datalog.avi, enter this code at the MATLAB
command prompt.

aviobj = avifile('my_datalog.avi');

The avifile function returns an AVI file object. You can use the AVI file
object returned by the avifile function, aviobj, to modify characteristics
of the AVI file by setting the values of the object’s properties. For example,
you can specify the codec used for data compression or specify the desired
quality of the output.

For more information about AVI file objects, see the MATLAB avifile
documentation. For more information about using AVI files to log image
data, see the following topics.

• “Logging Grayscale Images” on page 5-41

• “Guidelines for Using an AVI File Object to Log Image Data” on page 5-41

• “Closing the DiskLogger AVI file” on page 5-41

5-40

Logging Image Data to Disk

Logging Grayscale Images
When logging images in grayscale format, such as RS170, you must set the
value of the AVI object’s Colormap property to be a grayscale colormap.
Otherwise, the image data in the AVI file will not display correctly.

This example uses the MATLAB gray function to create a grayscale colormap
and sets the value of the AVI file object’s Colormap property with this
colormap.

logfile = avifile('my_datalog.avi','Colormap',gray(256));

Guidelines for Using an AVI File Object to Log Image Data
When you specify the AVI file object as the value of the DiskLogger property,
you are creating a copy of the AVI file object. Do not access the AVI file object
using the original variable name, aviobj, while the video input object is using
the file for data logging. To avoid file access conflicts, keep in mind these
guidelines when using an AVI file for data logging:

• Do not close an AVI file object while it is being used for data logging.

• Do not use the AVI file addframe function to add frames to the AVI file
object while it is being used for data logging.

• Do not change the values of any AVI file object properties while it is being
used for data logging.

Closing the DiskLogger AVI file
When data logging has ended, close the AVI file to make it accessible
outside the MATLAB environment. Use the value of the video input object
DiskLogger property to reference the AVI file, rather than the variable
returned when you created the AVI file object (aviobj). See “Example:
Logging Data to Disk” on page 5-42 for an example.

Before you close the file, make sure that the video input object has finished
logging frames to disk. Because logging to disk takes more time than logging
to memory, the completion of disk logging can lag behind the completion of
memory logging. To determine when logging to disk is complete, check the
value of the DiskLoggerFrameCount property; this property tells how many
frames have been logged to disk.

5-41

5 Acquiring Image Data

Note When you log frames to disk, the video input object queues the frames
for writing but the operating system might not perform the write operation
immediately. Closing an AVI file causes the data to be written to the disk.

Example: Logging Data to Disk
This example illustrates how to configure a video input object to log data
to a disk file:

1 Create a MATLAB AVI file object— Create the MATLAB AVI file that
you want to use for data logging, using the avifile function. You specify
the name of the AVI file when you create it.

my_log = 'my_datalog.avi';
aviobj = avifile(my_log);

aviobj

Adjustable parameters:
Fps: 15.0000

Compression: 'Indeo3'
Quality: 75

KeyFramePerSec: 2.1429
VideoName: 'my_datalog.avi'

Automatically updated parameters:
Filename: 'my_datalog.avi'

TotalFrames: 0
Width: 0

Height: 0
Length: 0

ImageType: 'Unknown'
CurrentState: 'Open'

2 Configure properties of the AVI file object — You can optionally
configure the properties of the AVI file object. The AVI file object supports
properties that control the data compression used, image quality, and
other characteristics of the file. The example sets the quality property

5-42

Logging Image Data to Disk

to a midlevel value. By lowering the quality, the AVI file object creates
smaller log files.

aviobj.Quality = 50;

Because this example acquires image data in grayscale format (RS170),
you must also specify the colormap used with the AVI object to ensure that
the stored data displays correctly.

aviobj.Colormap = gray(256);

3 Create a video input object— This example creates a video input object
for a Matrox image acquisition device, using the default video format
M_RS170. To run this example on your system, use the imaqhwinfo
function to get the video input object constructor for your image acquisition
device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

4 Configure video input object properties — Set up disk logging by
setting the value of the DiskLogger property to be aviobj, the AVI file
object created in step 1. Then, set the LoggingMode property to 'disk' (or
'disk&memory'). This example also sets the TriggerRepeat property.

vid.LoggingMode = 'disk&memory';
vid.DiskLogger = aviobj;
vid.TriggerRepeat = 3;

5 Start the video input object— Start logging data to disk.

start(vid)

The object executes an immediate trigger, acquires frames of data, repeats
the trigger three additional times, and then stops.

To verify that all the frames have been logged to the AVI file, check the
value of the DiskLoggerFrameCount property. This property tells the
number of frames that have been logged to disk.

5-43

5 Acquiring Image Data

vid.DiskLoggerFrameCount

ans =

40

Note Because it takes longer to write frames to a disk file than to memory,
the value of the DiskLoggerFrameCount property can lag behind the value
of the FramesAvailable property, which specifies the number of frames
logged to memory.

To verify that a disk file was created, go to the directory in which the log
file resides and make sure it exists. The exist function returns 2 if the
file exists.

if(exist(my_log)==2)
disp('AVI file created.')

end

6 Close the AVI file object — Close the AVI file to make it available
outside the MATLAB environment. Closing the AVI file object ensures that
the logged data is written to the disk file. Be sure to use the value of the
video input object DiskLogger property, vid.DiskLogger, to reference the
AVI file object, not the original variable, aviobj, returned by the avifile
function.

aviobj = close(vid.DiskLogger);

Use the original variable, aviobj, as the return value when closing an
AVI file object.

7 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-44

6

Working with Acquired
Image Data

When you trigger an acquisition, the toolbox stores the image data in a
memory buffer, a disk file, or both. To work with this data, you must bring it
into the MATLAB workspace.

This chapter describes how you use video input object properties and toolbox
functions to bring the logged data into the MATLAB workspace.

• “Overview” on page 6-2

• “Bringing Image Data into the MATLAB Workspace” on page 6-3

• “Working with Image Data in the MATLAB Workspace” on page 6-12

• “Retrieving Timing Information” on page 6-20

6 Working with Acquired Image Data

Overview
When a trigger occurs, the toolbox acquires frames from the video stream and
logs the frames to a buffer in memory, a disk file, or both, depending on the
value of the LoggingMode property. To work with this logged image data, you
must bring it into the MATLAB workspace.

The following figure illustrates a group of frames being acquired from the
video stream, logged to memory and disk, and brought into the MATLAB
workspace as a multidimensional numeric array. Note that when frames are
brought into the MATLAB workspace, they are removed from the memory
buffer.

Overview of Image Acquisition

6-2

Bringing Image Data into the MATLAB® Workspace

Bringing Image Data into the MATLAB Workspace

In this section...

“Overview” on page 6-3
“Moving Multiple Frames into the Workspace” on page 6-4
“Viewing Frames in the Memory Buffer” on page 6-6
“Bringing a Single Frame into the Workspace” on page 6-10

Overview
The toolbox provides three ways to move frames from the memory buffer
into the MATLAB workspace:

• Removing multiple frames from the buffer — To move a specified
number of frames from the memory buffer into the workspace, use the
getdata function. The getdata function removes the frames from the
memory buffer as it moves them into the workspace. The function blocks
the MATLAB command line until all the requested frames are available, or
until a timeout value expires. For more information, see “Moving Multiple
Frames into the Workspace” on page 6-4.

• Viewing the most recently acquired frames in the buffer— To bring
the most recently acquired frames in the memory buffer into the workspace
without removing them from the buffer, use the peekdata function. When
returning frames, peekdata starts with the most recently acquired frame
and works backward in the memory buffer. In contrast, getdata starts
at the beginning of the buffer, returning the oldest acquired frame first.
peekdata does not block the command line and is not guaranteed to return
all the frames you request. For more information, see “Viewing Frames
in the Memory Buffer” on page 6-6.

• Bringing a single frame of data into the workspace — As a
convenience, the toolbox provides the getsnapshot function, which
returns a single frame of data into the MATLAB workspace. Because the
getsnapshot function does not require starting the object or triggering an
acquisition, it is the easiest way to bring image data into the workspace.
getsnapshot is independent of the memory buffer; it can return a frame
even if the memory buffer is empty, and the frame returned does not affect

6-3

6 Working with Acquired Image Data

the value of the FramesAvailable property. For more information, see
“Bringing a Single Frame into the Workspace” on page 6-10.

Moving Multiple Frames into the Workspace
To move multiple frames of data from the memory buffer into the MATLAB
workspace, use the getdata function. By default, getdata retrieves the
number of frames specified in the FramesPerTrigger property but you can
specify any number. See the getdata reference page for complete information
about this function.

Note When the getdata function moves frames from the memory buffer into
the workspace, it removes the frames from the memory buffer.

In this figure, getdata is called at T1 with a request for 15 frames but only
six frames are available in the memory buffer. getdata blocks until the
specified number of frames becomes available, at T2, at which point getdata
moves the frames into the MATLAB workspace and returns control to the
command prompt.

6-4

Bringing Image Data into the MATLAB® Workspace

getdata Blocks Until Frames Become Available

Example: Acquiring 10 Seconds of Image Data
This example shows how you can configure an approximate time-based
acquisition using the FramesPerTrigger property:

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

2 Configure properties — To acquire 10 seconds of data, determine the
frame rate of your image acquisition device and then multiply the frame
rate by the number of seconds of data you want to acquire. The product of
this multiplication is the value of the FramesPerTrigger property.

For this example, assume a frame rate of 30 frames per second (fps).
Multiplying 30 by 10, you need to set the FramesPerTrigger property to
the value 300.

6-5

6 Working with Acquired Image Data

set(vid,'FramesPerTrigger',300)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer. After
logging the specified number of frames, the object stops running.

4 Bring the acquired data into the workspace — To verify that you
acquired the amount of data you wanted, use the optional getdata syntax
that returns the timestamp of every frame acquired. The difference
between the first timestamp and the last timestamp should approximate
the amount of data you expected.

[data time] = getdata(vid,300);

elapsed_time = time(300) - time(1)

10.0467

5 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Viewing Frames in the Memory Buffer
To view sample frames from the memory buffer without removing them, use
the peekdata function.

The peekdata function always returns the most recently acquired frames
in the memory buffer. For example, if you request three frames, peekdata
returns the most recently acquired frame in the buffer at the time of the
request and the two frames that immediately precede it.

The following figure illustrates this process. The command peekdata(vid,3)
is called at three different times (T1, T2, and T3). The shaded frames indicate

6-6

Bringing Image Data into the MATLAB® Workspace

the frames returned by peekdata at each call. (peekdata returns frames
without removing them from the memory buffer.)

Note in the figure that, at T3, only two frames have become available since
the last call to peekdata. In this case, peekdata returns only the two frames,
with a warning that it returned less data than was requested.

Frames Returned by peekdata

The following example illustrates how to use peekdata:

1 Create an image acquisition object — This example creates a video
input object for a Data Translation image acquisition device. To run this
example on your system, use the imaqhwinfo function to get the object
constructor for your image acquisition device and substitute that syntax
for the following code.

vid = videoinput('dt',1);

2 Configure properties — For this example, configure a manual trigger.
You must use the triggerconfig function to specify the trigger type.

6-7

6 Working with Acquired Image Data

triggerconfig(vid,'manual')

In addition, configure a large enough acquisition to allow several calls to
peekdata before it finishes.

set(vid,'FramesPerTrigger',300);

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The video object is now running but not logging.

isrunning(vid)

ans =

1

islogging(vid)

ans =

0

4 Use peekdata to view frames before a trigger— If you call peekdata
before you trigger the acquisition, peekdata can only return a single frame
of data because data logging has not been initiated and the memory buffer
is empty. If more than one frame is requested, peekdata issues a warning
that it is returning fewer than the requested number of frames.

pdata = peekdata(vid,50);
Warning: PEEKDATA could not return all the frames requested.

Verify that peekdata returned a single frame. A single frame of data
should have the same width and height as specified by the ROIPosition
property and the same number of bands, as specified by the NumberOfBands
property. In this example, the video format of the data is RGB so the value
of the NumberOfBands property is 3.

whos

6-8

Bringing Image Data into the MATLAB® Workspace

Name Size Bytes Class

pdata 96x128x3 36864 uint8 array
vid 1x1 1060 videoinput object

Verify that the object has not acquired any frames.

get(vid,'FramesAcquired')
ans =
0

5 Trigger the acquisition — Call the trigger function to trigger an
acquisition.

trigger(vid)

The object begins logging frames to the memory buffer.

6 View the most recently acquired frames — While the acquisition is
in progress, call peekdata several times to view the latest frames in the
memory buffer. Depending on the number of frames you request, and the
timing of these requests, peekdata might return fewer than the number
of frames you specify.

pdata = peekdata(vid,50);

To verify that peekdata returned the frames you requested, check the
dimensions of pdata. peekdata returns a four-dimensional array of frames,
where the last dimension indicates the number of frames returned.

whos
Name Size Bytes Class

pdata 4-D 1843200 uint8 array
vid 1x1 1060 videoinput object

size(pdata)

ans =

96 128 3 50

6-9

6 Working with Acquired Image Data

7 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Bringing a Single Frame into the Workspace
To bring a single frame of image data into the MATLAB workspace, use the
getsnapshot function. You can call the getsnapshot function at any time
after object creation.

This example illustrates how simple it is to use the getsnapshot function.

1 Create an image acquisition object — This example creates a video
input object for a Matrox device. To run this example on your system,
use the imaqhwinfo function to get the object constructor for your image
acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

2 Bring a frame into the workspace— Call the getsnapshot function to
bring a frame into the workspace. Note that you do not need to start the
video input object before calling the getsnapshot function.

frame = getsnapshot(vid);

The getsnapshot function returns an image of the same width and height
as specified by the ROIPosition property and the same number of bands as
specified by the NumberOfBands property. In this example, the video format
of the data is RGB so the value of the NumberOfBands property is 3.

whos
Name Size Bytes Class

frame 96x128x3 36864 uint8 array
vid 1x1 1060 videoinput object

6-10

Bringing Image Data into the MATLAB® Workspace

Note that the frame returned by getsnapshot is not removed from the
memory buffer, if frames are stored there, and does not affect the value
of the FramesAvailable property.

3 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

6-11

6 Working with Acquired Image Data

Working with Image Data in the MATLAB Workspace

In this section...

“Understanding Image Data” on page 6-12
“Determining the Dimensions of Image Data” on page 6-13
“Determining the Data Type of Image Frames” on page 6-16
“Specifying the Color Space” on page 6-17
“Viewing Acquired Data” on page 6-19

Understanding Image Data
The illustrations in this documentation show the video stream and the
contents of the memory buffer as a sequence of individual frames. In reality,
each frame is a multidimensional array. The following figure illustrates the
format of an individual frame.

Format of an Individual Frame

The following sections describes how the toolbox

• Determines the dimensions of the data returned

• Determines the data type used for the data

6-12

Working with Image Data in the MATLAB® Workspace

• Determines the color space of the data

This section also describes several ways to view acquired image data.

Determining the Dimensions of Image Data
The video format used by the image acquisition device is the primary
determinant of the width, height, and the number of bands in each image
frame. Image acquisition devices typically support multiple video formats.
You select the video format when you create the video input object (described
in “Specifying the Video Format” on page 4-11). The video input object stores
the video format in the VideoFormat property.

Industry-standard video formats, such as RS170 or PAL, include specifications
of the image frame width and height, referred to as the image resolution. For
example, the RS170 standard defines the width and height of the image frame
as 640-by-480 pixels. Other devices, such as digital cameras, support the
definition of many different, nonstandard image resolutions. The video input
object stores the video resolution in the VideoResolution property.

Each image frame is three dimensional; however, the video format determines
the number of bands in the third dimension. For color video formats, such as
RGB, each image frame has three bands: one each for the red, green, and blue
data. Other video formats, such as the grayscale RS170 standard, have only a
single band. The video input object stores the size of the third dimension in
the NumberOfBands property.

Note Because devices typically express video resolution as width-by-height,
the toolbox uses this convention for the VideoResolution property. However,
when data is brought into the MATLAB workspace, the image frame
dimensions are listed in reverse order, height-by-width, because MATLAB
expresses matrix dimensions as row-by-column.

ROIs and Image Dimensions
When you specify a region-of-interest (ROI) in the image being captured,
the dimensions of the ROI determine the dimensions of the image frames
returned. The VideoResolution property specifies the dimensions of the

6-13

6 Working with Acquired Image Data

image data being provided by the device; the ROIPosition property specifies
the dimensions of the image frames being logged. See the ROIPosition
property reference page for more information.

Example: Video Format and Image Dimensions
The following example illustrates how video format affects the size of the
image frames returned.

1 Select a video format— Use the imaqhwinfo function to view the list of
video formats supported by your image acquisition device. This example
shows the video formats supported by a Matrox Orion frame grabber. The
formats are industry standard, such as RS170, NTSC, and PAL. These
standards define the image resolution.

info = imaqhwinfo('matrox');

info.DeviceInfo.SupportedFormats

ans =
Columns 1 through 4

'M_RS170' 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'

Columns 5 through 8

'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'

Columns 9 through 10

'M_PAL_RGB' 'M_PAL_YC'

2 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device using the default video
format, RS170. To run this example on your system, use the imaqhwinfo
function to get the object constructor for your image acquisition device and
substitute that syntax for the following code.

vid = videoinput('matrox',1);

6-14

Working with Image Data in the MATLAB® Workspace

3 View the video format and video resolution properties— The toolbox
creates the object with the default video format. This format defines the
video resolution.

get(vid,'VideoFormat')

ans =

M_RS170

get(vid,'VideoResolution')

ans =

[640 480]

4 Bring a single frame into the workspace — Call the getsnapshot
function to bring a frame into the workspace.

frame = getsnapshot(vid);

The dimensions of the returned data reflect the image resolution and the
value of the NumberOfBands property.

vid.NumberOfBands
ans =

1

size(frame)

ans =

480 640

5 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames
of data.

6-15

6 Working with Acquired Image Data

6 Bring multiple frames into the workspace — Call the getdata
function to bring multiple image frames into the MATLAB workspace.

data = getdata(vid,10);

The getdata function brings 10 frames of data into the workspace.
Note that the returned data is a four-dimensional array: each frame is
three-dimensional and the nth frame is indicated by the fourth dimension.

size(data)

ans =

480 640 1 10

7 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Determining the Data Type of Image Frames
By default, the toolbox returns image frames in the data type used by the
image acquisition device. If there is no MATLAB data type that matches
the object’s native data type, getdata chooses a MATLAB data type that
preserves numerical accuracy. For example, in RGB 555 format, each color
component is expressed in 5-bits. getdata returns each color as a uint8 value.

You can specify the data type you want getdata to use for the returned
data. For example, you can specify that getdata return image frames as an
array of class double. To see a list of all the data types supported, see the
getdata reference page.

The following example illustrates the data type of returned image data.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

6-16

Working with Image Data in the MATLAB® Workspace

vid = videoinput('matrox',1);

2 Bring a single frame into the workspace — Call the getsnapshot
function to bring a frame into the workspace.

frame = getsnapshot(vid);

3 View the class of the returned data — Use the class function to
determine the data type used for the returned image data.

class(frame)

ans =

uint8

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Specifying the Color Space
For most image acquisition devices, the video format of the video stream
determines the color space of the acquired image data, that is, the way color
information is represented numerically.

For example, many devices represent colors as RGB values. In this color
space, colors are represented as a combination of various intensities of red,
green, and blue. Another color space, widely used for digital video, is the
YCbCr color space. In this color space, luminance (brightness or intensity)
information is stored as a single component (Y). Chrominance (color)
information is stored as two color-difference components (Cb and Cr). Cb
represents the difference between the blue component and a reference value.
Cr represents the difference between the red component and a reference value.

The toolbox can return image data in grayscale, RGB, and YCbCr. To
specify the color representation of the image data, set the value of the
ReturnedColorSpace property. To display image frames using the image
or imagesc functions, the data must use the RGB color space. Another

6-17

6 Working with Acquired Image Data

MathWorks™ product, the Image Processing Toolbox software, includes
functions that convert YCbCr data to RGB data, and vice versa.

Note Some devices that claim to support the YUV color space actually
support the YCbCr color space. YUV is similar to YCbCr but not identical.
The difference between YUV and YCbCr is the scaling factor applied to the
result. YUV refers to a particular scaling factor used in composite NTSC
and PAL formats. In most cases, you can specify the YCbCr color space for
devices that support YUV.

The following example illustrates how to specify the color space of the
returned image data.

1 Create an image acquisition object — This example creates a video
input object for a generic Windows image acquisition device. To run this
example on your system, use the imaqhwinfo function to get the object
constructor for your image acquisition device and substitute that syntax
for the following code.

vid = videoinput('winvideo',1);

2 View the default color space used for the data — The value of the
ReturnedColorSpace property indicates the color space of the image data.

vid.ReturnedColorSpace

ans =

rgb

3 Modify the color space used for the data— To change the color space
of the returned image data, set the value of the ReturnedColorSpace
property.

set(vid,'ReturnedColorSpace','grayscale')

ans =

grayscale

6-18

Working with Image Data in the MATLAB® Workspace

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Viewing Acquired Data
Once you bring the data into the MATLAB workspace, you can view it as you
would any other image in MATLAB.

The Image Acquisition Toolbox software includes a function, imaqmontage,
that you can use to view all the frames of a multiframe image array in a
single MATLAB image object. imaqmontage arranges the frames so that they
roughly form a square. imaqmontage can be useful for visually comparing
multiple frames.

MATLAB includes two functions, image and imagesc, that display images in
a figure window. Both functions create a MATLAB image object to display the
frame. You can use image object properties to control aspects of the display.
The imagesc function automatically scales the input data.

The Image Processing Toolbox software includes an additional display routine
called imshow. Like image and imagesc, this function creates a MATLAB
image object. However, imshow also automatically sets various image object
properties to optimize the display.

6-19

6 Working with Acquired Image Data

Retrieving Timing Information

In this section...

“Introduction” on page 6-20
“Determining When a Trigger Executed” on page 6-20
“Determining When a Frame Was Acquired” on page 6-21
“Example: Determining the Frame Delay Duration” on page 6-22

Introduction
The following sections describe how the toolbox provides acquisition timing
information, particularly,

• Determining when a trigger executed

• Determining when a particular frame was acquired

To see an example of retrieving timing information, see “Example:
Determining the Frame Delay Duration” on page 6-22.

Determining When a Trigger Executed
To determine when a trigger executed, check the information returned by
a trigger event in the object’s event log. You can also get access to this
information in a callback function associated with a trigger event. For more
information, see “Retrieving Event Information” on page 7-7.

As a convenience, the toolbox returns the time of the first trigger execution
in the video input object’s InitialTriggerTime property. This figure
indicates which trigger is returned in this property when multiple triggers
are configured.

6-20

Retrieving Timing Information

InitialTriggerTime Records First Trigger Execution

The trigger timing information is stored in MATLAB clock vector format. The
following example displays the time of the first trigger for the video input
object vid. The example uses the MATLAB datestr function to convert the
information into a form that is more convenient to view.

datestr(vid.InitialTriggerTime)

ans =

02-Mar-2007 13:00:24

Determining When a Frame Was Acquired
The toolbox provides two ways to determine when a particular frame was
acquired:

• By the absolute time of the acquisition

• By the elapsed time relative to the execution of the trigger

You can use the getdata function to retrieve both types of timing information.

Getting the Relative Acquisition Time
When you use the getdata function, you can optionally specify two return
values. One return value contains the image data; the other return value
contains a vector of timestamps that measure, in seconds, the time when the
frame was acquired relative to the first trigger.

[data time] = getdata(vid);

6-21

6 Working with Acquired Image Data

To see an example, see “Example: Determining the Frame Delay Duration”
on page 6-22.

Getting the Absolute Acquisition Time
When you use the getdata function, you can optionally specify three return
values. The first contains the image data, the second contains a vector of
relative acquisition times, and the third is an array of structures where each
structure contains metadata associated with a particular frame.

[data time meta] = getdata(vid);

Each structure in the array contains the following four fields. The AbsTime
field contains the absolute time the frame was acquired. You can also retrieve
this metadata by using event callbacks. See “Retrieving Event Information”
on page 7-7 for more information.

Frame Metadata

Field Name Description

AbsTime Absolute time the frame was acquired, returned in
MATLAB clock format
[year month day hour minute seconds]

FrameNumber Frame number relative to when the object was started
RelativeFrame Frame number relative to trigger execution
TriggerIndex Trigger the event is associated with. For example, when

the object starts, the associated trigger is 0. Upon stop, it
is equivalent to the TriggersExecuted property.

Example: Determining the Frame Delay Duration
To illustrate, this example calculates the duration of the delay specified by
the TriggerFrameDelay property.

1 Create an image acquisition object — This example creates a video
input object for a Data Translation image acquisition device using the
default video format. To run this example on your system, use the

6-22

Retrieving Timing Information

imaqhwinfo function to get the object constructor for your image acquisition
device and substitute that syntax for the following code.

vid = videoinput('dt',1);

2 Configure properties — For this example, configure a trigger frame
delay large enough to produce a noticeable duration.

set(vid,'TriggerFrameDelay',50)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but data logging does not begin until the trigger frame delay expires. After
logging the specified number of frames, the object stops running.

4 Bring the acquired data into the workspace — Call the getdata
function to bring frames into the workspace. Specify a return value to
accept the timing information returned by getdata.

[data time] = getdata(vid);

The variable time is a vector that contains the time each frame was logged,
measured in seconds, relative to the execution of the first trigger. Check
the first value in the time vector. It should reflect the duration of the delay
before data logging started.

time

time =

4.9987
5.1587
5.3188
5.4465
5.6065
5.7665
5.8945

6-23

6 Working with Acquired Image Data

6.0544
6.2143
6.3424

5 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

6-24

7

Using Events and Callbacks

You can enhance the power and flexibility of your image acquisition
application by using event callbacks. An event is a specific occurrence that can
happen while an image acquisition object is running. The toolbox defines a set
of events that include starting, stopping, or acquiring frames of data.

When a particular event occurs, the toolbox can execute a function that you
specify. This is called a callback. Certain events can result in one or more
callbacks. You can use callbacks to perform processing tasks while your image
acquisition object continues running. For example, you can display a message,
analyze data, or perform other tasks. The start and stop callbacks, however,
execute synchronously; the object does not perform any further processing
until the callback function finishes.

Callbacks are controlled through video input object properties. Each event
type has an associated property. You specify the function that you want
executed as the value of the property.

• “Example: Using the Default Callback Function” on page 7-2

• “Event Types” on page 7-4

• “Retrieving Event Information” on page 7-7

• “Creating and Executing Callback Functions” on page 7-12

7 Using Events and Callbacks

Example: Using the Default Callback Function
To illustrate how to use callbacks, this section presents a simple example that
creates an image acquisition object and associates a callback function with
the start event, trigger event, and stop event. For information about all the
event callbacks supported by the toolbox, see “Event Types” on page 7-4.

The example uses the default callback function provided with the toolbox,
imaqcallback. The default callback function displays the name of the object
along with information about the type of event that occurred and when it
occurred. To learn how to create your own callback functions, see “Creating
and Executing Callback Functions” on page 7-12.

This example illustrates how to use the default callback function.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

2 Configure properties— Set the values of three callback properties. The
example uses the default callback function imaqcallback.

set(vid,'StartFcn',@imaqcallback)
set(vid,'TriggerFcn',@imaqcallback)
set(vid,'StopFcn',@imaqcallback)

For this example, specify the amount of data to log.

set(vid, 'FramesPerTrigger',100);

3 Start the image acquisition object— Start the image acquisition object.
The object executes an immediate trigger, acquires 100 frames of data, and
then stops. With the three callback functions enabled, the object outputs
information about each event as it occurs.

start(vid)

Start event occurred at 14:38:46 for video input object: M_RS170-matrox-1.

7-2

Example: Using the Default Callback Function

Trigger event occurred at 14:38:46 for video input object: M_RS170-matrox-1.

Stop event occurred at 14:38:49 for video input object: M_RS170-matrox-1.

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

7-3

7 Using Events and Callbacks

Event Types
The Image Acquisition Toolbox software supports several different types of
events. Each event type has an associated video input object property that
you can use to specify the function that executes when the event occurs.

This table lists the supported event types, the name of the video input object
property associated with the event, and a brief description of the event.
For detailed information about these callback properties, see the property
reference information in Chapter 14, “Properties — Alphabetical List”.

The toolbox generates a specific set of information for each event and stores
it in an event structure. To learn more about the contents of these event
structures and how to retrieve this information, see “Retrieving Event
Information” on page 7-7.

Events and Callback Function Properties

Event Callback Property Description

Error ErrorFcn The toolbox generates an error event when a
run-time error occurs, such as a hardware error
or timeout. Run-time errors do not include
configuration errors such as setting an invalid
property value.

When an error event occurs, the toolbox executes
the function specified by the ErrorFcn property.
By default, the toolbox executes the default
callback function for this event, imaqcallback,
which displays the error message at the MATLAB
command line.

Frames
Acquired

FramesAcquiredFcn The toolbox generates a frames acquired event when
a specified number of frames have been acquired.
You use the FramesAcquiredFcnCount property to
specify this number.

When a frames acquired event occurs, the
toolbox executes the function specified by the
FramesAcquiredFcn property.

7-4

Event Types

Events and Callback Function Properties (Continued)

Event Callback Property Description

Start StartFcn The toolbox generates a start event when an object
is started. You use the start function to start an
object.

When a start event occurs, the toolbox executes the
function specified by the StartFcn property.

Note The StartFcn callback executes
synchronously. If you specify a StartFcn callback
function, the toolbox waits for the function to finish
executing before performing any other processing.
If an error occurs in the start callback function, the
object never starts.

Stop StopFcn The toolbox generates a stop event when the object
stops running. An object stops running when the
stop function is called, the specified number of
frames is acquired, or a run-time error occurs.

When a stop event occurs, the toolbox executes the
function specified by the StopFcn property.

Note The StopFcn callback executes synchronously.
If you specify a StopFcn callback function, the
toolbox waits for the function to finish executing
before performing any other processing.

7-5

7 Using Events and Callbacks

Events and Callback Function Properties (Continued)

Event Callback Property Description

Timer TimerFcn The toolbox generates a timer event when a specified
amount of time expires. Time is measured relative
to when the object starts running. You use the
TimerPeriod property to specify the amount of time.

Note Some timer events might not execute if your
system is significantly slowed or if the TimerPeriod
is set too small.

When a timer event occurs, the toolbox executes the
function specified by the TimerFcn property.

Trigger TriggerFcn The toolbox generates a trigger event when a
trigger executes. The video input object executes
immediate triggers. You execute manual triggers by
calling the trigger function. The image acquisition
device executes hardware triggers when a specified
condition is met.

When a trigger event occurs, the toolbox executes
the function specified by the TriggerFcn property.

7-6

Retrieving Event Information

Retrieving Event Information

In this section...

“Introduction” on page 7-7
“Event Structures” on page 7-7
“Example: Accessing Data in the Event Log” on page 7-9

Introduction
Each event has associated with it a set of information, generated by the
toolbox and stored in an event structure. This information includes the event
type, the time the event occurred, and other event-specific information. While
a video input object is running, the toolbox records event information in the
object’s EventLog property. You can also access the event structure associated
with an event in a callback function.

This section

• Defines the information in an event structure for all event types

• Describes how to retrieve information from the EventLog property

For information about accessing event information in a callback function, see
“Creating and Executing Callback Functions” on page 7-12.

Event Structures
An event structure contains two fields: Type and Data. For example, this is
an event structure for a trigger event:

Type: 'Trigger'
Data: [1x1 struct]

The Type field is a text string that specifies the event type. For a trigger
event, this field contains the text string 'Trigger'.

The Data field is a structure that contains information about the event.
The composition of this structure varies depending on which type of event

7-7

7 Using Events and Callbacks

occurred. For information about the information associated with specific
events, see the following sections:

• “Data Fields for Start, Stop, Frames Acquired, and Trigger Events” on
page 7-8

• “Data Fields for Error Events” on page 7-8

• “Data Fields for Timer Events” on page 7-9

Data Fields for Start, Stop, Frames Acquired, and Trigger
Events
For start, stop, frames acquired, and trigger events, the Data structure
contains these fields.

Field Name Description

AbsTime Absolute time the event occurred, returned
inMATLAB clock format

[year month day hour minute seconds]

FrameMemoryLimit Amount of memory allotted for frame storage. You can
specify this value using the imaqmem function.

FrameMemoryUsed Amount of frame memory that is currently in use
FrameNumber Frame number relative to when the object was started
RelativeFrame Frame number relative to the execution of a trigger
TriggerIndex Trigger the event is associated with. For example,

upon start, the associated trigger is 0. Upon stop, it is
equivalent to the TriggersExecuted property.

Data Fields for Error Events
For error events, the Data structure contains these fields.

Field Name Description

AbsTime Absolute time the event occurred, returned in
MATLAB clock format

[year month day hour minute seconds]

7-8

Retrieving Event Information

Field Name Description

FrameMemoryLimit Amount of memory allotted for frame storage. You can
specify this value using the imaqmem function.

FrameMemoryUsed Amount of frame memory that is currently in use
Message Text message associated with the error
MessageID MATLAB message identifier associated with the error

Data Fields for Timer Events
For timer events, the Data structure contains these fields.

Field Name Description

AbsTime Absolute time the event occurred, returned in MATLAB
clock format

[year month day hour minute seconds]

FrameMemoryLimit Amount of memory allotted for frame storage. You can
specify this value using the imaqmem function.

FrameMemoryUsed Amount of frame memory that is currently in use

Example: Accessing Data in the Event Log
While a video input object is running, the toolbox stores event information in
the object’s EventLog property. The value of this property is an array of event
structures. Each structure represents one event. For detailed information
about the composition of an event structure for each type of event, see “Event
Structures” on page 7-7.

The toolbox adds event structures to the EventLog array in the order in which
the events occur. The first event structure reflects the first event recorded,
the second event structure reflects the second event recorded, and so on.

7-9

7 Using Events and Callbacks

Note Only start, stop, error, and trigger events are recorded in the EventLog
property. Frames-acquired events and timer events are not included in the
EventLog. Event structures for these events (and all the other events) are
available to callback functions. For more information, see “Creating and
Executing Callback Functions” on page 7-12.

To illustrate the event log, this example creates a video input object, runs it,
and then examines the object’s EventLog property:

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

2 Start the image acquisition object— Start the image acquisition object.
By default, the object executes an immediate trigger, acquires 10 frames of
data, and then stops.

start(vid)

3 View the event log — Access the EventLog property of the video input
object. The execution of the video input object generated three events:
start, trigger, and stop. Thus the value of the EventLog property is a 1x3
array of event structures.

events = vid.EventLog
events =

1x3 struct array with fields:
Type
Data

To list the events that are recorded in the EventLog property, examine the
contents of the Type field.

{events.Type}

7-10

Retrieving Event Information

ans =
'Start' 'Trigger' 'Stop'

To get information about a particular event, access the Data field in that
event structure. The example retrieves information about the trigger event.

trigdata = events(2).Data

trigdata =

AbsTime: [2004 12 29 16 40 52.5990]
FrameMemoryLimit: 139427840
FrameMemoryUsed: 0

FrameNumber: 0
RelativeFrame: 0
TriggerIndex: 1

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

7-11

7 Using Events and Callbacks

Creating and Executing Callback Functions

In this section...

“Introduction” on page 7-12
“Creating Callback Functions” on page 7-12
“Specifying Callback Functions” on page 7-14
“Example: Viewing a Sample Frame” on page 7-16
“Example: Monitoring Memory Usage” on page 7-17

Introduction
The power of using event callbacks is the processing that you can perform in
response to events. You decide which events you want to associate callbacks
with and the functions these callbacks execute.

This section

• Describes how to create a callback function

• Describes how to specify the function as the value of a callback property

• Provides two examples of using event callbacks:

- Shows how to use callbacks to view a sample frame from the frames
being acquired

- Uses callback to implement a simple memory monitoring function

Note Callback function execution might be delayed if the callback involves
a CPU-intensive task such as updating a figure.

Creating Callback Functions
This section explains how to create callback functions for the TimerFcn,
FramesAcquiredFcn, StartFcn, StopFcn, TriggerFcn, and ErrorFcn
callbacks.

7-12

Creating and Executing Callback Functions

M-file callback functions require at least two input arguments:

• The image acquisition object

• The event structure associated with the event

The function header for this callback function illustrates this basic syntax.

function mycallback(obj,event)

The first argument, obj, is the image acquisition object itself. Because the
object is available, you can use in your callback function any of the toolbox
functions, such as getdata, that require the object as an argument. You
can also access all object properties.

The second argument, event, is the event structure associated with the event.
This event information pertains only to the event that caused the callback
function to execute. For a complete list of supported event types and their
associated event structures, see “Event Structures” on page 7-7.

In addition to these two required input arguments, you can also specify
additional, application-specific arguments for your callback function.

Note To receive the object and event arguments, and any additional
arguments, you must use a cell array when specifying the name of the
function as the value of a callback property. For more information, see
“Specifying Callback Functions” on page 7-14.

Example: Writing a Callback Function
To illustrate, this example implements a callback function for a
frames-acquired event. This callback function enables you to monitor the
frames being acquired by viewing a sample frame periodically.

To implement this function, the callback function acquires a single frame
of data and displays the acquired frame in a MATLAB figure window. The
function also accesses the event structure passed as an argument to display
the timestamp of the frame being displayed. The drawnow command in the
callback function forces MATLAB to update the display.

7-13

7 Using Events and Callbacks

function display_frame(obj,event)

sample_frame = peekdata(obj,1);

imagesc(sample_frame);

drawnow; % force an update of the figure window

abstime = event.Data.AbsTime;

t = fix(abstime);

sprintf('%s %d:%d:%d','timestamp', t(4),t(5),t(6))

To see how this function can be used as a callback, see “Example: Viewing a
Sample Frame” on page 7-16.

Specifying Callback Functions
You associate a callback function with a specific event by setting the value
of the event’s callback property. The video input object supports callback
properties for all types of events.

You can specify the callback function as the value of the property in any of
three ways:

• Text string

• Cell array

• Function handle

The following sections provide more information about each of these options.

Note To access the object or event structure passed to the callback function,
you must specify the function as a cell array or as a function handle.

7-14

Creating and Executing Callback Functions

Using a Text String to Specify Callback Functions
You can specify the callback function as a string. For example, this code
specifies the callback function mycallback as the value of the start event
callback property StartFcn for the video input object vid.

vid.StartFcn = 'mycallback';

In this case, the callback is evaluated in the MATLAB workspace.

Using a Cell Array to Specify Callback Functions
You can specify the callback function as a text string inside a cell array.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the video input object vid.

vid.StartFcn = {'mycallback'};

To specify additional parameters, include them as additional elements in
the cell array.

time = datestr(now,0);
vid.StartFcn = {'mycallback',time};

The first two arguments passed to the callback function are still the video
input object (obj) and the event structure (event). Additional arguments
follow these two arguments.

Using Function Handles to Specify Callback Functions
You can specify the callback function as a function handle.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the video input object vid.

vid.StartFcn = @mycallback;

To specify additional parameters, include the function handle and the
parameters as elements in the cell array.

time = datestr(now,0);
vid.StartFcn = {@mycallback,time};

7-15

7 Using Events and Callbacks

If you are executing a local callback function from within an M-file, you must
specify the callback as a function handle.

Specifying a Toolbox Function as a Callback
In addition to specifying callback functions of your own creation, you can
also specify the start, stop, or trigger toolbox functions as callbacks.
For example, this code sets the value of the stop event callback to Image
Acquisition Toolbox start function.

vid.StopFcn = @start;

Disabling Callbacks
If an error occurs in the execution of the callback function, the toolbox disables
the callback and displays a message similar to the following.

start(vid)
??? Error using ==> frames_cb
Too many input arguments.

Warning: The FramesAcquiredFcn callback is being disabled.

To enable a callback that has been disabled, set the value of the property
associated with the callback or restart the object.

Example: Viewing a Sample Frame
This example creates a video input object and sets the frames acquired
event callback function property to the display_frame function, created in
“Example: Writing a Callback Function” on page 7-13.

The example sets the TriggerRepeat property of the object to 4 so that 50
frames are acquired. When run, the example displays a sample frame from
the acquired data every time five frames have been acquired.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

7-16

Creating and Executing Callback Functions

vid = videoinput('matrox', 1);

2 Configure property values— This example sets the FramesPerTrigger
value to 30 and the TriggerRepeat property to 4. The example also
specifies as the value of the FramesAcquiredFcn callback the event
callback function display_frame, created in “Example: Writing a Callback
Function” on page 7-13. The object will execute the FramesAcquiredFcn
every five frames, as specified by the value of the FramesAcquiredFcnCount
property.

set(vid,'FramesPerTrigger', 30);
set(vid,'TriggerRepeat', 4);
set(vid,'FramesAcquiredFcnCount', 5);
set(vid,'FramesAcquiredFcn', {'display_frame'});

3 Acquire data— Start the video input object. Every time five frames are
acquired, the object executes the display_frame callback function. This
callback function displays the most recently acquired frame logged to the
memory buffer.

start(vid)

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Example: Monitoring Memory Usage
This example creates a callback function for a timer event that displays the
toolbox’s current memory usage and stops the acquisition when the available
memory for frame storage falls below a specified amount.

Creating the Memory Monitor Callback Function
This callback function implements a simple memory usage monitoring
function. The callback function uses the imaqmem function to retrieve two
memory usage statistics, FrameMemoryLimit and FrameMemoryUsed, and then
calculates the amount of memory that is currently left for allocating frames.
When the amount of memory available falls below a specified value, the
function outputs a message and stops the object.

7-17

7 Using Events and Callbacks

function mem_mon(obj,event)

out = imaqmem;

mem_left = out.FrameMemoryLimit - out.FrameMemoryUsed;

msg = 'Memory left for frames';
msg2 = 'Memory load';
low_limit = 2000000;

if(mem_left > low_limit)
sprintf('%s: %d \n%s: %d',msg, mem_left,msg2, out.MemoryLoad)

else
disp('Memory available for frames getting low.');
disp('Stopping acquisition.')
stop(obj);

end

Running the Example
The example acquires frames until the amount of memory left for frame
storage reaches a lower limit specified in the callback function.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

2 Configure property values — This example sets up a continuous
acquisition by setting the FramesPerTrigger value to Inf. The example
also specifies the timer event callback function mem_mon, created in
“Creating the Memory Monitor Callback Function” on page 7-17, as the
value of the TimerFcn callback. The object will execute the TimerFcn every
five seconds, as specified by the value of the TimerPeriod property.

set(vid,'FramesPerTrigger',Inf);
set(vid,'TimerPeriod',5);
set(vid,'TimerFcn',{'mem_mon'});

7-18

Creating and Executing Callback Functions

3 Acquire data— Start the video input object. Every 5 seconds, the object
executes the callback function associated with the timer event. This
function outputs the current memory available for frame storage and the
memory load statistic. When the amount of memory reaches the specified
lower limit, the callback function stops the acquisition.

start(vid)
ans =

ans =

Memory left for frames: 27791360
Memory load: 88

ans =

Memory left for frames: 26316800
Memory load: 88

ans =

Memory left for frames: 24842240
Memory load: 89

.

.

.

Memory left for frames: 2969600
Memory load: 97

Memory available for frames getting low.
Stopping acquisition.

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

7-19

7 Using Events and Callbacks

7-20

8

Using the From Video
Device Block in Simulink

The Image Acquisition Toolbox software includes a block that can be used in
Simulink to bring live video data into models.

• “Overview” on page 8-2

• “Opening the Block Library” on page 8-3

• “Example: Saving Video Data to a File” on page 8-5

8 Using the From Video Device Block in Simulink®

Overview
This chapter describes how to use the Image Acquisition Toolbox block
library. The toolbox block library contains one block called the From Video
Device block. You can use this block to acquire live video data in a Simulink
model. You can connect this block with blocks in other Simulink libraries to
create sophisticated models.

Use of the Image Acquisition Toolbox From Video Device block requires
Simulink, a tool for simulating dynamic systems. If you are new to Simulink,
read the Getting Started section of the Simulink documentation to better
understand its functionality.

For full details about the block in the Image Acquisition Toolbox software, see
the reference page for the From Video Device block in .

8-2

Opening the Block Library

Opening the Block Library

In this section...

“Using the imaqlib Command” on page 8-3
“Using the Simulink Library Browser” on page 8-3

Using the imaqlib Command
To open the Image Acquisition Toolbox block library, enter

imaqlib

at the MATLAB prompt. MATLAB displays the contents of the library in a
separate window.

Image Acquisition Toolbox™ Block Library

Using the Simulink Library Browser
To open the Image Acquisition Toolbox block library, start the Simulink
Library Browser and select the library from the list of available block libraries.

8-3

8 Using the From Video Device Block in Simulink®

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. MATLAB opens the browser window. The left pane
contains a list of available block libraries in alphabetical order. To open the
Image Acquisition Toolbox block library, click its icon.

8-4

Example: Saving Video Data to a File

Example: Saving Video Data to a File

In this section...

“Introduction” on page 8-5
“Step 1: Open the Image Acquisition Toolbox Library” on page 8-5
“Step 2: Open a Model or Create a New Model” on page 8-6
“Step 3: Drag the From Video Device Block into the Model” on page 8-7
“Step 4: Drag Other Blocks to Complete the Model” on page 8-8
“Step 5: Connect the Blocks” on page 8-9
“Step 6: Specify From Video Device Block Parameter Values” on page 8-10
“Step 7: Run the Simulation” on page 8-12

Introduction
The best way to learn about the Image Acquisition Toolbox From Video Device
block is to see an example. This section provides a step-by-step example that
builds a simple model using the block in conjunction with blocks from other
blockset libraries.

Step 1: Open the Image Acquisition Toolbox Library
To use the From Video Device block, you must open the Image Acquisition
Toolbox block library. To open the library, start the Simulink Library Browser
and select the Image Acquisition Toolbox entry from the list.

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. (For more information about opening the library, see
“Opening the Block Library” on page 8-3.)

8-5

8 Using the From Video Device Block in Simulink®

Step 2: Open a Model or Create a New Model
To use a block, you must add it to an existing model or create a new model.

To create a new model, select File > New > Model from the Simulink Library
Browser. Simulink opens an empty model window. To assign the new model a
name, use the Save option.

8-6

Example: Saving Video Data to a File

Step 3: Drag the From Video Device Block into the
Model
To use the From Video Device block in a model, click the block in the library
and, holding the mouse button down, drag it into the model window. Note
how the name on the block changes to reflect the device connected to your
system that is associated with the block.

Drag From Video Device Block into Model Window

8-7

8 Using the From Video Device Block in Simulink®

Step 4: Drag Other Blocks to Complete the Model
To illustrate using the block, this example creates a simple model that
acquires data and then outputs the data to a file in Audio Video Interleave
(AVI) format. To create this model, the example uses a block from Video and
Image Processing Blockset™.

Open the Video and Image Processing Blockset library. In the library window,
open the Sinks subsystem. From this subsystem, click the To Multimedia
File block in the library and, holding the mouse button down, drag the block
into the model window.

8-8

Example: Saving Video Data to a File

Drag Output Block to Model Window

Step 5: Connect the Blocks
Connect the three outputs from the From Video Device block to the three
corresponding inputs on the To Multimedia File block. (You can leave the
Audio input on the To Multimedia File block unconnected.) One quick way to

8-9

8 Using the From Video Device Block in Simulink®

make all three connections at once is to select the From Video Device block,
press and hold the Ctrl key, and then click the To Multimedia File block.

Notice that the output ports on this particular camera device are Y, Cb,
Cr and the input ports on the To Multimedia File block are R, G, B. Some
devices designate color band by YCbCr and some devices designate it by RGB.
Both are valid and will work together.

Connect the From Video Device Block to the To Multimedia File Block

Step 6: Specify From Video Device Block Parameter
Values
To check From Video Device block parameter settings, double-click the block’s
icon in the model window. This opens the Source Block Parameters dialog
box for the From Video Device block, shown in the following figure. Use the
various fields in the dialog box to determine the current values of From Video
Device block parameters or change the values.

8-10

Example: Saving Video Data to a File

For example, using this dialog box, you can specify the device you want to use,
select the video format you want to use with the device, or specify the block
sample time. For more details, see the block reference page.

You can set parameters for any of the blocks you include in your model. For
example, to specify the name of the AVI file, double-click the To Multimedia
File block. Make sure that you have write permission to the directory into
which the block writes the AVI file.

8-11

8 Using the From Video Device Block in Simulink®

Step 7: Run the Simulation
To run the simulation, click the Start simulation button on the model
window toolbar. You can use toolbar options to specify how long to run the
simulation and to stop a running simulation.

While the simulation is running, the status bar at the bottom of the model
window indicates the progress of the simulation. After the simulation
finishes, check the directory in which you ran the simulation to verify that an
AVI file was created.

8-12

9

Adding Support for
Additional Hardware

The Image Acquisition Toolbox software supports connections with hardware
from many common vendors, but it might not support the hardware you use.
To add support for your hardware, you can create an adaptor using the Image
Acquisition Toolbox Adaptor Kit.

• “Overview” on page 9-2

• “For More Information” on page 9-3

9 Adding Support for Additional Hardware

Overview
The Image Acquisition Toolbox Adaptor Kit is a C++ framework that you can
use to implement an adaptor. An adaptor is a dynamic link library (DLL) that
implements the connection between the Image Acquisition Toolbox engine
and a device driver via the vendor’s SDK API. When you use the Adaptor Kit
framework, you can take advantage of many prepackaged toolbox features
such as disk logging, multiple triggering modes, and a standardized interface
to the image acquisition device.

After you create your adaptor DLL and register it with the toolbox using the
imaqregister function, you can create a video input object to connect with
a device through your adaptor. In this way, adaptors enable the dynamic
loading of support for hardware without requiring recompilation and linking
of the toolbox.

9-2

For More Information

For More Information
To build an adaptor requires familiarity with C++, knowledge of the
application programming interface (API) provided by the manufacturer of
your hardware, and familiarity with Image Acquisition Toolbox concepts,
functionality, and terminology. To learn more about creating an adaptor,
read the Image Acquisition Toolbox Adaptor Kit User’s Guide. For detailed
information about the adaptor kit framework classes, see the Image
Acquisition Toolbox Adaptor Kit Class Reference, which is available in

matlabroot\toolbox\imaq\imaqadaptors\kit\doc\adaptorkit.chm

where matlabroot represents your MATLAB installation directory.

9-3

http://www.mathworks.com/access/helpdesk/help/pdf_doc/imaq/adaptorkit.pdf

9 Adding Support for Additional Hardware

9-4

10

Troubleshooting

This chapter provides information about solving common problems you
might encounter with the Image Acquisition Toolbox software and the video
acquisition hardware it supports.

• “Overview” on page 10-2

• “Troubleshooting DALSA Coreco IFC Hardware” on page 10-3

• “Troubleshooting DALSA Coreco Sapera Hardware” on page 10-5

• “Troubleshooting Data Translation Hardware” on page 10-7

• “Troubleshooting DCAM IEEE 1394 (FireWire) Hardware” on page 10-8

• “Troubleshooting Hamamatsu Hardware” on page 10-15

• “Troubleshooting Matrox Hardware” on page 10-16

• “Troubleshooting QImaging Hardware” on page 10-18

• “Troubleshooting National Instruments Hardware” on page 10-20

• “Troubleshooting Windows Video Hardware” on page 10-22

• “Troubleshooting a Video Preview Window” on page 10-25

• “Contacting The MathWorks and Using the imaqsupport Function” on
page 10-26

10 Troubleshooting

Overview
If, after installing the Image Acquisition Toolbox software and using it to
establish a connection to your image acquisition device, you are unable to
acquire data or encounter other problems, try these troubleshooting steps
first. They might help fix the problem.

1 Verify that your image acquisition hardware is functioning properly.

2 If the hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the Image Acquisition
Toolbox software.

The following sections describe how to perform these steps for the vendors and
categories of devices supported by the Image Acquisition Toolbox software.

If you are encountering problems with the preview window, see
“Troubleshooting a Video Preview Window” on page 10-25.

Note To see the full list of hardware that the toolbox supports, visit
the Image Acquisition Toolbox product page at the MathWorks Web site
www.mathworks.com/products/imaq.

10-2

http://www.mathworks.com/products/imaq

Troubleshooting DALSA® Coreco IFC Hardware

Troubleshooting DALSA Coreco IFC Hardware

In this section...

“Troubleshooting DALSA Coreco IFC Devices” on page 10-3
“Determining the Driver Version for DALSA Coreco IFC Devices” on page
10-4

Troubleshooting DALSA Coreco IFC Devices
The Image Acquisition Toolbox software supports the use of both DALSA®
Coreco IFC hardware and DALSA Coreco Sapera hardware. Please see the
appropriate section depending on which driver your hardware uses.

If you are having trouble using the Image Acquisition Toolbox software with a
supported DALSA Coreco IFC frame grabber, follow these troubleshooting
steps:

1 Verify that your image acquisition hardware is functioning properly.

For DALSA Coreco IFC devices, run the application that came with your
hardware, the IFC Camera Configurator, and verify that you can view a
live video stream from your camera.

2 Verify that the toolbox can locate your camera file, if you are using a camera
file to configure the device. Make sure that your camera file appears in the
List of Cameras in the DALSA Coreco IFC Camera Configurator.

3 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox. The Image
Acquisition Toolbox software is only compatible with specific driver
versions provided with the DALSA Coreco hardware and is not guaranteed
to work with any other versions.

• Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for DALSA
Coreco IFC Devices” on page 10-4.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of

10-3

10 Troubleshooting

supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
DALSA Coreco Web site (www.imaging.com) to download the correct driver.

Determining the Driver Version for DALSA Coreco
IFC Devices
To determine the DALSA Coreco IFC Library version you are using, view the
release notes for the driver. You can access the release notes through the
Windows Start menu.

1 Click the Start button.

2 On the Start menu, select Programs.

3 From the Programs menu, select the IFC link.

4 On the IFC menu, select the IFC release notes.

10-4

http://www.mathworks.com/products/imaq
http://www.imaging.com

Troubleshooting DALSA® Coreco Sapera Hardware

Troubleshooting DALSA Coreco Sapera Hardware

In this section...

“Troubleshooting DALSA Coreco Sapera Devices” on page 10-5
“Determining the Driver Version for DALSA Coreco Sapera Devices” on
page 10-6

Troubleshooting DALSA Coreco Sapera Devices
The Image Acquisition Toolbox software supports the use of both DALSA
Coreco IFC hardware and DALSA Coreco Sapera hardware. Please see the
appropriate section depending on which driver your hardware uses.

If you are having trouble using the Image Acquisition Toolbox software with a
supported DALSA Coreco Sapera frame grabber, follow these troubleshooting
steps:

1 Verify that your image acquisition hardware is functioning properly.

For DALSA Coreco Sapera devices, run the application that came with
your hardware, the Sapera CamExpert, and verify that you can view a
live video stream from your camera.

2 If you are using a camera file to configure the device, verify that the toolbox
can locate your camera file. Make sure that your camera appears in the
Camera list in the Sapera CamExpert. To test the camera, select the
camera in the list and click the Grab button.

3 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the DALSA Coreco hardware and is
not guaranteed to work with any other versions.

10-5

10 Troubleshooting

• Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for DALSA
Coreco Sapera Devices” on page 10-6.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
DALSA Coreco Web site (www.imaging.com) to download the correct driver.

Determining the Driver Version for DALSA Coreco
Sapera Devices
To determine the DALSA Coreco Sapera Library version you are using, view
the release notes for the driver. You can access the release notes through the
Windows Start menu.

1 Click the Start button to open the Start menu.

2 Select Programs > DALSA Coreco Imaging > Sapera LT to open the
Sapera LT menu.

3 Select Readme to view the Sapera release notes.

10-6

http://www.mathworks.com/products/imaq
http://www.imaging.com

Troubleshooting Data Translation® Hardware

Troubleshooting Data Translation Hardware
If you are having trouble using the Image Acquisition Toolbox software with a
supported Data Translation frame grabber, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Data Translation devices, run the application that came with your
hardware and verify that you can receive live video.

2 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox. The Image
Acquisition Toolbox software is only compatible with specific driver
versions provided by Data Translation with the Imaging Omni CD and is
not guaranteed to work with any other versions.

• Find out the driver version you are using on your system.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit
the Data Translation Web site (www.datatranslation.com) to download
the correct driver.

3 Install the Data Translation Software Development Kit (SDK).

If the imaqhwinfo function does not return the driver for a Data Translation
frame grabber, or the imaqhwinfo function or videoinput functions return
an error message about a missing DLL (olfg32.dll), you may need to
install additional files from the Imaging Omni CD.

By default, when you install drivers for your Data Translation frame
grabber, the installation program may not install all the files the device
drivers need. The additional files needed by the device driver are part of
the SDK installation, not the device driver installation. If you get error
messages about missing files, insert the Imaging Omni CD into your
CD-ROM drive and install the SDK.

10-7

http://www.mathworks.com/products/imaq
http://www.datatranslation.com

10 Troubleshooting

Troubleshooting DCAM IEEE 1394 (FireWire) Hardware

In this section...

“Troubleshooting DCAM IEEE 1394 Hardware” on page 10-8
“Installing the CMU DCAM Driver” on page 10-9
“Running the CMU Camera Demo Application” on page 10-10

Troubleshooting DCAM IEEE 1394 Hardware
If you are having trouble using the Image Acquisition Toolbox software with
an IEEE 1394 (FireWire) camera, using the toolbox’s dcam adaptor, follow
these troubleshooting steps:

1 Verify that your IEEE 1394 (FireWire) camera is plugged into the IEEE
1394 (FireWire) port on your computer and is powered up.

2 Verify that your IEEE 1394 (FireWire) camera can be accessed through
the dcam adaptor.

• Make sure the camera is compliant with the IIDC 1394-based
Digital Camera (DCAM) specification. Vendors typically include this
information in documentation that comes with the camera. If your
digital camera is not DCAM compliant, you might be able to use the
winvideo adaptor. See “Troubleshooting Windows Video Hardware” on
page 10-22 for information.

• Make sure the camera outputs data in uncompressed format. Cameras
that output data in Digital Video (DV) format, such as digital
camcorders, cannot use the dcam adaptor. To access these devices, use
the winvideo adaptor. See “Troubleshooting Windows Video Hardware”
on page 10-22 for information.

• Make sure you specified the dcam adaptor when you created the video
input object. Some IEEE 1394 (FireWire) cameras can be accessed
through either the dcam or winvideo adaptors. If you can connect to
your camera from the toolbox but cannot access some camera features,
such as hardware triggering, you might be accessing the camera through
a DirectX® driver. See “Creating a Video Input Object” on page 4-9 for
more information about specifying adaptors.

10-8

Troubleshooting DCAM IEEE® 1394 (FireWire) Hardware

3 Verify that your IEEE 1394 (FireWire) camera is using the Carnegie
Mellon University (CMU) DCAM driver version 6.4.4.

Note The toolbox only supports connections to IEEE 1394 (FireWire)
DCAM-compliant devices using the CMU DCAM driver. The toolbox is
not compatible with any other vendor-supplied driver, even if the driver
is DCAM compliant.

To verify this, run the demo application provided by CMU,
1394CameraDemo.exe. This demo application is among the files you install
from the CMU driver archive file when you install the CMU DCAM
driver — see “Installing the CMU DCAM Driver” on page 10-9. To learn
how to run the demo application, see “Running the CMU Camera Demo
Application” on page 10-10.

• If the demo application recognizes the camera, the camera is set up to
use the CMU DCAM driver and is ready for use by the toolbox.

• If the demo application does not recognize the camera, install the CMU
DCAM driver. See “Installing the CMU DCAM Driver” on page 10-9
for instructions.

• If the demo application recognizes your camera, but the toolbox still does
not, verify that the camera complies with the correct DCAM specification
version for the camera and the correct DCAM CMU driver version
required by the toolbox. For the correct information about supported
hardware, visit the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

Installing the CMU DCAM Driver
The Image Acquisition Toolbox software supports acquiring data from IEEE
1394 (FireWire) cameras that support the IIDC 1394-based Digital Camera
(DCAM) specification. To use a DCAM compliant camera, you must use
the DCAM driver created by Carnegie Mellon University (CMU) to connect
to these devices.

10-9

http://www.mathworks.com/products/imaq

10 Troubleshooting

Note The CMU DCAM driver is the only DCAM driver supported by the
toolbox. You cannot use vendor-supplied drivers, even if they are compliant
with the DCAM specification.

Installing the Driver
To install the CMU DCAM driver on your system, follow this procedure:

1 Obtain the CMU DCAM driver files. The Image Acquisition Toolbox
software includes the CMU DCAM installation file, 1394camera644.exe,
in the directory

matlabroot\toolbox\imaq\imaqextern\drivers\win32\dcam

where matlabroot represents the name of your MATLAB installation
directory.

You can also download the DCAM driver directly from CMU. Go to the Web
site www.cs.cmu.edu/~iwan/1394 and click the download link.

2 Start the installation by double-clicking the .exe file.

On the first page of the installation wizard under Select components to
install, select the first three items in the installation list, and click Next.
On the second page of the wizard, accept the default location or browse to a
new one, and click Install.

Running the CMU Camera Demo Application
The Carnegie Mellon University (CMU) DCAM driver distribution includes a
camera demo application, named 1394CameraDemo.exe. The demo application
is among the files you installed in the previous section.

You can use this demo application to verify whether your camera is using the
CMU DCAM driver. The following describes the step-by-step procedure you
must perform to access a camera through this demo application.

1 Select Start > Programs > CMU 1394 Camera > 1394 Camera Demo.

2 The application opens a window, shown in the following figure.

10-10

Troubleshooting DCAM IEEE® 1394 (FireWire) Hardware

3 From the Camera Demo application, select Camera > Check Link. This
option causes the demo application to look for DCAM-compatible cameras
that are available through the IEEE 1394 (FireWire) connection.

The demo application displays the results of this search in a pop-up
message box. In the following example, the demo application found a
camera. Click OK to continue.

4 Select Camera > Select Camera and select the camera you want to use.
The Select Camera option is not enabled until after the Check Link
option has successfully found cameras.

5 Select Camera > Init Camera. In this step, the demo application checks
the values of various camera properties. The demo application might resize
itself to fit the video format of the specified camera. If you see the following
dialog box message, click Yes.

10-11

10 Troubleshooting

Note If you are using 1394b, select Camera > 1394b Support,
and then check the Maximum Speed option after choosing
1394b support. If you do not see 400 MB per second or
higher, refer to the customer technical solution on that topic,
http://www.mathworks.com/support/solutions/data/1-3LNN8U.html.

6 Select Camera > Show Camera to start acquiring video.

10-12

http://www.mathworks.com/support/solutions/data/1-3LNN8U.html

Troubleshooting DCAM IEEE® 1394 (FireWire) Hardware

10-13

10 Troubleshooting

The demo application starts displaying live video in the window.

7 To exit, select Stop Camera from the Camera menu and then click Exit.

10-14

Troubleshooting Hamamatsu Hardware

Troubleshooting Hamamatsu Hardware
If you are having trouble using the Image Acquisition Toolbox software with a
x Hamamatsu digital camera, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

• Make sure that your camera is plugged into the IEEE 1394 (FireWire)
port on your computer and is powered up.

• Run the application that came with your hardware and verify that you
can acquire video frames. Use the exAcq.exe application, available from
Hamamatsu.

2 Make sure you specified the hamamatsu adaptor when you created the video
input object. Some IEEE 1394 (FireWire) cameras can be accessed through
either the dcam or winvideo adaptors. See “Creating a Video Input Object”
on page 4-9 for more information about specifying adaptors.

3 Verify that you are using the correct hardware device driver that is
compatible with the toolbox. The Image Acquisition Toolbox software is
only compatible with specific driver versions provided by Hamamatsu and
is not guaranteed to work with any other versions.

• Find out the driver version you are using on your system.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
Hamamatsu Software API Support page (www.dcamapi.com) to download
the correct driver that is supported by the toolbox, if it is available there. If
it is not available, please contact Hamamatsu to obtain the correct driver.

10-15

http://www.mathworks.com/products/imaq
http://www.dcamapi.com

10 Troubleshooting

Troubleshooting Matrox Hardware

In this section...

“Troubleshooting Matrox Devices” on page 10-16
“Determining the Driver Version for Matrox Devices” on page 10-17

Troubleshooting Matrox Devices
If you are having trouble using the Image Acquisition Toolbox software with a
supported Matrox frame grabber, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Matrox devices, run the application that came with your hardware,
Matrox Intellicam, and verify that you can receive live video.

2 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox. The Image
Acquisition Toolbox software is only compatible with specific driver
versions provided with the Matrox Imaging Library (MIL) or MIL-Lite
software and is not guaranteed to work with any other versions.

• Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for Matrox
Devices” on page 10-17.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
Matrox Web site (www.matrox.com) to download the correct drivers.

Note There is no difference between MIL and MIL-Lite software inside of
MATLAB. They both work with Matrox Imaging devices.

10-16

http://www.mathworks.com/products/imaq
http://www.matrox.com

Troubleshooting Matrox® Hardware

Determining the Driver Version for Matrox Devices
To determine the Matrox Imaging Library version you are using, run the
Matrox MIL Configuration utility. You can access this software through the
Windows Start button.

Select Start > Programs > Matrox Imaging Products > MIL
Configuration.

The software version is listed on the Information tab.

Matrox® MIL Configuration Utility

10-17

10 Troubleshooting

Troubleshooting QImaging Hardware

In this section...

“Troubleshooting QImaging Devices” on page 10-18
“Determining the Driver Version for QImaging Devices” on page 10-19

Troubleshooting QImaging Devices
If you are having trouble using the Image Acquisition Toolbox software with a
supported x QImaging frame grabber, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For QImaging devices, run the application that came with your hardware,
QCapture, and verify that you can receive live video.

2 Select Start > Programs > QCapture Suite > QCapture.

3 In QCapture, select Acquire > Live Preview to test that the hardware
is working properly.

4 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the QImaging software and is not
guaranteed to work with any other versions.

• Find out the driver version you are using on your system. To learn
how to get this information, see “Determining the Driver Version for
QImaging Devices” on page 10-19.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

10-18

http://www.mathworks.com/products/imaq

Troubleshooting QImaging Hardware

If you discover that you are using an unsupported driver version, visit the
QImaging Web site (www.qimaging.com) to download the correct drivers.

Determining the Driver Version for QImaging Devices
To determine the QImaging driver version you are using, run the QImaging
QCapture utility.

Select Start > Programs > QCapture Suite > QCapture, and then select
Help > About to see the driver version number.

10-19

http://www.qimaging.com

10 Troubleshooting

Troubleshooting National Instruments Hardware

In this section...

“Troubleshooting National Instruments Devices” on page 10-20
“Determining the Driver Version for National Instruments Devices” on
page 10-21

Troubleshooting National Instruments Devices
If you are having trouble using the Image Acquisition Toolbox software with a
supported National Instruments® frame grabber, follow these troubleshooting
steps:

1 Verify that your image acquisition hardware is functioning properly.

For National Instruments devices, run the application that came with your
hardware, Measurement & Automation Explorer, and verify that you can
receive live video.

2 Select Start > Programs > National Instruments > Measurement
& Automation.

3 To test that the hardware is working properly, in Measurement &
Automation Explorer, expand Devices and Interfaces, then expand
NI-IMAQ Devices, then expand the node that represents the board you
want to use.

4 With the board expanded, select the channel or port that you have
connected a camera to.

5 Click the Grab button to verify that your camera is working. If it is not,
see the National Instruments device documentation.

6 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

10-20

Troubleshooting National Instruments® Hardware

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the National Instruments software
and is not guaranteed to work with any other versions.

• Find out the driver version you are using on your system. To learn how
to get this information, see Determining the Driver Version.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit
the National Instruments Web site (www.ni.com) to download the correct
drivers.

Determining the Driver Version for National
Instruments Devices
To determine the National Instruments driver version you are using, run the
Measurement & Automation Explorer.

Select Help > System Information, and then see the NI–IMAQ Software
field for the driver version number.

10-21

http://www.mathworks.com/products/imaq
http://www.ni.com

10 Troubleshooting

Troubleshooting Windows Video Hardware

In this section...

“Troubleshooting Windows Video Devices” on page 10-22
“Determining the Microsoft DirectX Version” on page 10-23

Troubleshooting Windows Video Devices
If you are having trouble using the Image Acquisition Toolbox software with
a supported Windows video acquisition device, follow these recommended
troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Windows devices, run the application that came with your hardware
and verify that you can receive live video.

You can also verify your hardware by running the Microsoft image capture
application, AMCap.exe, which is included with the toolbox distribution. Go
to the matlabroot\toolbox\imaq\imaq directory, where matlabroot is
your top-level installation directory, and double-click AMCAP.exe.

If you can start the utility, run the utility, and close the utility without
encountering any errors, the toolbox should be able to operate with your
image acquisition device. If you encounter errors, resolve them before
attempting to use the toolbox with the device.

2 If your hardware is functioning properly, verify that you are using
hardware device drivers that are compatible with the toolbox.

• Find out the driver version you are using on your system. The Image
Acquisition Toolbox software is only compatible with WDM (Windows
Driver Model) or VFW (Video for Windows) drivers. Contact the
hardware manufacturer to determine if the driver provided with your
hardware conforms to these driver classes.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

10-22

http://www.mathworks.com/products/imaq

Troubleshooting Windows® Video Hardware

If you discover that you are using an unsupported driver version, visit the
hardware manufacturer’s Web site for the correct drivers.

3 Make sure you have the correct version of Microsoft DirectX installed on
your computer. The Image Acquisition Toolbox software is only compatible
with specific versions of the Microsoft DirectX multimedia technology and
is not guaranteed to work with any other versions.

• Find out which driver version you are using on your system. To learn
how to get this information, see “Determining the Microsoft DirectX
Version” on page 10-23.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct version information, check the
Image Acquisition Toolbox product page at The MathWorks Web site
(www.mathworks.com/products/imaq).

If you discover that you are using an unsupported version, visit the
Microsoft DirectX Web site (www.microsoft.com/directx/) for the correct
version of DirectX.

Determining the Microsoft DirectX Version
To determine the version of Microsoft DirectX you are using, run the DirectX
Diagnostic Tool. You can access this software through the Windows Start
button.

Select Start > Run.

In the Run dialog box, launch the DirectX Diagnostic Tool by opening the
dxdiag program.

10-23

http://www.mathworks.com/products/imaq
http://www.microsoft.com/directx/

10 Troubleshooting

In the DirectX Diagnostic Tool, the Microsoft DirectX version is listed on the
System tab under the System Information section.

DirectX® Diagnostic Tool

10-24

Troubleshooting a Video Preview Window

Troubleshooting a Video Preview Window
When previewing the video stream, if you encounter a problem, try one of
the following solutions.

Problem Possible Solutions

Video Preview window stops
running.

• Close the preview window and reopen it.

• Verify that your image acquisition device
is working properly. Close MATLAB and
run the application that came with your
device.

• Make sure no other application is using
the device.

Video Preview window
displays blank, gray
window.

• Close the preview window and reopen it.

• Check memory usage. It is possible that
there is not enough memory available for
the incoming image data. To increase
the memory allocation, use the imaqmem
function and specify a higher value for the
FrameMemoryLimit.

• Make sure no other application is using
the device.

Video Preview window
displays dropped frames
message.

• Close the preview window and reopen it.

• Check memory usage. It is possible that
there is not enough memory available for
the incoming image data. To increase
the memory allocation, use the imaqmem
function and specify a higher value for the
FrameMemoryLimit.

10-25

10 Troubleshooting

Contacting The MathWorks and Using the imaqsupport
Function

If you need support from The MathWorks, visit our Web site at
http://www.mathworks.com/support/.

Before contacting The MathWorks, you should run the imaqsupport function.
This function returns diagnostic information such as:

• The versions of The MathWorks products you are using

• Your MATLAB path

• The characteristics of your hardware

• Information about your adaptors

The output from imaqsupport is automatically saved to a text file,
imaqsupport.txt, which you can use to help troubleshoot your problem.

To have MATLAB generate this file for you, type

imaqsupport

10-26

http://www.mathworks.com/support/

11

Function Reference

General-Purpose Objects (p. 11-2) Functions related to objects
Triggering (p. 11-3) Functions related to triggering
Data (p. 11-3) Functions related to data
Tools (p. 11-4) Functions related to image

acquisition tools
Getting Command-Line Function
Help (p. 11-5)

Command-line function help

11 Function Reference

General-Purpose Objects
Video input objects have one or more video source objects associated with
them. In this table, functions that work on both types of objects use the
phrase “image acquisition object” to refer to both types of objects.

clear Clear image acquisition object from
MATLAB workspace

delete Remove image acquisition object
from memory

disp Display method for image acquisition
objects

get Image acquisition object properties
getselectedsource Currently selected video source

object
imaqfind Find image acquisition objects
islogging Determine whether video input

object is logging
isrunning Determine whether video input

object is running
isvalid Determine whether image

acquisition object is associated
with image acquisition device

load Load image acquisition object into
MATLAB workspace

obj2mfile Convert video input objects to
MATLAB code

save Save image acquisition objects to
MAT-file

set Configure or display image
acquisition object properties

start Obtain exclusive use of image
acquisition device

11-2

Triggering

stop Stop video input object
videoinput Create video input object
wait Wait until image acquisition object

stops running or logging

Triggering
trigger Initiate data logging
triggerconfig Configure video input object trigger

properties
triggerinfo Provide information about available

trigger configurations

Data
flushdata Remove data from memory buffer

used to store acquired image frames
getdata Acquired image frames to MATLAB

workspace
getsnapshot Immediately return single image

frame
peekdata Most recently acquired image data

11-3

11 Function Reference

Tools
closepreview Close Video Preview window
imaqhelp Image acquisition object function

and property help
imaqhwinfo Information about available image

acquisition hardware
imaqmem Limit memory or display memory

usage for the Image Acquisition
Toolbox software

imaqmontage Sequence of image frames as
montage

imaqreset Disconnect and delete all image
acquisition objects

imaqtool Launch Image Acquisition Tool
preview Preview of live video data
propinfo Property characteristics for image

acquisition objects
stoppreview Stop previewing video data

11-4

Getting Command-Line Function Help

Getting Command-Line Function Help
To get command-line function help, you can use the MATLAB help function.
For example, to get help for the getsnapshot function, type the following:

help getsnapshot

However, the Image Acquisition Toolbox software provides “overloaded”
versions of several MATLAB functions. That is, it provides toolbox-specific
implementations of these functions using the same function name.

For example, the Image Acquisition Toolbox software provides an overloaded
version of the delete function. You get help for the MATLAB version of this
function if you type the following:

help delete

You can determine if a function is overloaded by examining the last section
of the help. For delete, the help contains the following overloaded versions
(not all are shown):

Overloaded methods
help char/delete.m
help scribehandle/delete.m
help scribehgobj/delete.m

.

.

.
help imaqdevice/delete.m

To obtain help on the Image Acquisition Toolbox version of this function,
type the following:

help imaqdevice/delete

To avoid having to specify which overloaded version you want to view, use
the imaqhelp function:

imaqhelp delete

11-5

11 Function Reference

You can also use this function to get help on image acquisition object
properties. For more information on overloaded functions and class
directories, refer to MATLAB Classes and Objects in the Help browser.

11-6

12

Functions — Alphabetical
List

clear

Purpose Clear image acquisition object from MATLAB workspace

Syntax clear obj

Description clear obj removes the image acquisition object obj from the MATLAB
workspace. obj can be either a video input object or a video source
object.

Note If you clear a video input object that is running (the Running
property is set to 'on'), the object continues executing.

You can restore cleared objects to the MATLAB workspace with the
imaqfind function.

To remove an image acquisition object from memory, use the delete
function.

See Also delete, imaqfind, isvalid

12-2

closepreview

Purpose Close Video Preview window

Syntax closepreview(obj)
closepreview

Description closepreview(obj) stops the image acquisition object obj from
previewing and, if the default Video Preview window was used, closes
the window.

closepreview stops all image acquisition objects from previewing and,
for all image acquisition objects that used the default Video Preview
window, closes the windows.

Note If the preview window was created with a user specified image
object handle as the target, closepreview does not close the figure
window.

See Also preview, stoppreview

12-3

delete

Purpose Remove image acquisition object from memory

Syntax delete(obj)

Description delete(obj) removes obj, an image acquisition object or array of
image acquisition objects, from memory. Use delete to free memory at
the end of an image acquisition session.

If obj is an array of image acquisition objects and one of the objects
cannot be deleted, the delete function deletes the objects that can be
deleted and returns a warning.

When obj is deleted, it becomes invalid and cannot be reused. Use
the clear command to remove invalid image acquisition objects from
the MATLAB workspace.

If multiple references to an image acquisition object exist in the
workspace, deleting the image acquisition object invalidates the
remaining references. Use the clear command to delete the remaining
references to the object from the workspace.

If the image acquisition object obj is running or being previewed, the
delete function stops the object and closes the preview window before
deleting it.

Examples vid = videoinput('winvideo', 1);
preview(vid);
delete(vid);

See Also imaqfind, isvalid, videoinput

12-4

disp

Purpose Display method for image acquisition objects

Syntax obj
disp(obj)

Description obj displays summary information for image acquisition object obj.

disp(obj) displays summary information for image acquisition object
obj.

If obj is an array of image acquisition objects, disp outputs a table of
summary information about the image acquisition objects in the array.

In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when:

• Creating an image acquisition object, using the videoinput function

• Configuring property values using the dot notation

Examples This example illustrates the summary display of a video input object.

vid = videoinput('winvideo')

12-5

disp

This example shows the summary information displayed for an array of
video input objects.

vid2 = videoinput('winvideo');

[vid vid2]

Video Input Object Array:

Index: Type: Name:
1 videoinput RGB555_128x96-winvideo-1
2 videoinput RGB555_128x96-winvideo-1

See Also videoinput

12-6

flushdata

Purpose Remove data from memory buffer used to store acquired image frames

Syntax flushdata(obj)
flushdata(obj,mode)

Description flushdata(obj) removes all the data from the memory buffer used to
store acquired image frames. obj can be a single video input object
or an array of video input objects.

flushdata(obj,mode) removes all the data from the memory buffer
used to store acquired image frames, where mode can have either of
the following values:

Mode Description

'all' Removes all the data from the memory buffer and
sets the FramesAvailable property to 0 for the video
input object obj. This is the default mode when none
is specified, flushdata(obj).

'triggers' Removes data from the memory buffer that was
acquired during the oldest trigger executed.
TriggerRepeat must be greater than 0 and
FramesPerTrigger must not be set to inf.

See Also getdata, imaqhelp, peekdata, propinfo, videoinput

12-7

get

Purpose Image acquisition object properties

Syntax get(obj)
V = get(obj)
V = get(obj,PropertyName)

Description get(obj) displays all property names and their current values for
image acquisition object obj.

V = get(obj) returns a structure, V, in which each field name is the
name of a property of obj and each field contains the value of that
property.

V = get(obj,PropertyName) returns the value of the property
specified by PropertyName for image acquisition object obj. Use the
get(obj) syntax to view a list of all the properties supported by a
particular image acquisition object.

If PropertyName is a 1-by-N or N-by-1 cell array of strings containing
property names, V is a 1-by-N cell array of values. If obj is a vector of
image acquisition objects, V is an M-by-N cell array of property values
where M is equal to the length of obj and N is equal to the number of
properties specified.

Examples vid = videoinput('matrox', 1);
get(vid, {'FramesPerTrigger','FramesAcquired'})
out = get(vid, 'LoggingMode')
get(vid);

See Also set, videoinput

12-8

getdata

Purpose Acquired image frames to MATLAB workspace

Syntax data = getdata(obj)
data = getdata(obj,n)
data = getdata(obj,n,type)
data = getdata(obj,n,type,format)
[data,time] = getdata(...)
[data, time, metadata] = getdata(...)

Description data = getdata(obj) returns data, which contains the number of
frames specified in the FramesPerTrigger property of the video input
object obj. obj must be a 1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

H Image height, as specified in the object’s ROIPosition
property

W Image width, as specified in the object’s ROIPosition
property

B Number of color bands, as specified in the NumberOfBands
property

F The number of frames returned

data is returned to the MATLAB workspace in its native data type
using the color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the
returned data. Use imaqmontage to view multiple frames at once.

data = getdata(obj,n) returns n frames of data associated with the
video input object obj.

data = getdata(obj,n,type) returns n frames of data associated with
the video input object obj, where type is one of the text strings in the
following table that specify the data type used to store the returned
data.

12-9

getdata

Type String Data Type

'uint8' Unsigned 8-bit integer
'uint16' Unsigned 16-bit integer
'uint32' Unsigned 32-bit integer
'single' Single precision
'double' Double precision
'native' Uses native data type. This is the default.

If type is not specified, 'native' is used as the default. If there is no
MATLAB data type that matches the object’s native data type, getdata
chooses a MATLAB data type that preserves numerical accuracy.
For example, the components of 12-bit RGB color data would each be
returned as uint8 data.

data = getdata(obj,n,type,format) returns n frames of data
associated with the video input object obj, where format is one of the
text strings in the following table that specify the MATLAB format
of data.

Format
String Description

'numeric' Returns data as an H-by-W-by-B-by-F array. This is
the default format if none is specified.

'cell' Returns data as an F-by-1 cell array of H-by-W-by-B
matrices

[data,time] = getdata(...) returns time, an F-by-1 matrix, where
F is the number of frames returned in data. Each element of time
indicates the relative time, in seconds, of the corresponding frame in
data, relative to the first trigger.

time = 0 is defined as the point at which data logging begins. When
data logging begins, the object’s Logging property is set to 'On'. time
is measured continuously with respect to 0 until the acquisition stops.

12-10

getdata

When the acquisition stops, the object’s Running property is set to
'Off'.

[data, time, metadata] = getdata(...) returns metadata, an
F-by-1 array of structures, where F is the number of frames returned
in data. Each structure contains information about the corresponding
frame in data. The metadata structure contains these fields:

Metadata Field Description

'AbsTime' Absolute time the frame was acquired, expressed
as a time vector

'FrameNumber' Number identifying the nth frame since the
start command was issued

'RelativeFrame' Number identifying the nth frame relative to the
start of a trigger

'TriggerIndex' Number of the trigger in which this frame was
acquired

getdata is a blocking function that returns execution control to the
MATLAB workspace after the requested number of frames becomes
available within the time period specified by the object’s Timeout
property. The object’s FramesAvailable property is automatically
reduced by the number of frames returned by getdata. If the requested
number of frames is greater than the frames to be acquired, getdata
returns an error.

It is possible to issue a Ctrl+C while getdata is blocking. This does not
stop the acquisition but does return control to MATLAB.

Examples Construct a video input object associated with a Matrox device at ID 1.

obj = videoinput('matrox', 1);

Initiate an acquisition and access the logged data.

start(obj);

12-11

getdata

data = getdata(obj);

Display each image frame acquired.

imaqmontage(data);

Remove the video input object from memory.

delete(obj);

See Also getsnapshot, imaqhelp, imaqmontage, peekdata, propinfo

12-12

getselectedsource

Purpose Currently selected video source object

Syntax src = getselectedsource(obj)

Description src = getselectedsource(obj) searches all the video source objects
associated with the video input object obj and returns the video source
object, src, that has the Selected property value set to 'on'.

To select a source for acquisition, use the SelectedSourceName property
of the video input object.

obj must be a 1-by-1 video input object.

See Also imaqhelp, get, videoinput

12-13

getsnapshot

Purpose Immediately return single image frame

Syntax frame = getsnapshot(obj)

Description frame = getsnapshot(obj) immediately returns one single image
frame, frame, from the video input object obj. The frame of data
returned is independent of the video input object FramesPerTrigger
property and has no effect on the value of the FramesAvailable or
FramesAcquired property.

The object obj must be a 1-by-1 video input object.

frame is returned as an H-by-W-by-B matrix where

H Image height, as specified in the ROIPosition property
W Image width, as specified in the ROIPosition property
B Number of bands associated with obj, as specified in the

NumberOfBands property

frame is returned to the MATLAB workspace in its native data type
using the color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc function to view the
returned data.

Note If obj is running but not logging, and has been configured with a
hardware trigger, a timeout error will occur.

To interrupt the getsnapshot function and return control to the
MATLAB command line, issue the ^C (Ctrl+C) command.

Examples Create a video input object.

obj = videoinput('matrox', 1);

12-14

getsnapshot

Acquire and display a single frame of data.

frame = getsnapshot(obj);
image(frame);

Remove the video input object from memory.

delete(obj);

See Also getdata, imaqhelp, peekdata

12-15

imaqfind

Purpose Find image acquisition objects

Syntax imaqfind
out = imaqfind
out = imaqfind(PropertyName, Value, PropertyName2, Value2,

...)
out = imaqfind(S)
out = imaqfind(obj, PropertyName, Value, PropertyName2,

Value2,...)

Description imaqfind returns an array containing all the video input objects that
exist in memory. If only a single video input object exists in memory,
imaqfind displays a detailed summary of that object.

out = imaqfind returns an array, out, of all the video input objects
that exist in memory.

out = imaqfind(PropertyName, Value, PropertyName2,
Value2,...) returns a cell array, out, of image acquisition objects
whose property names and property values match those passed as
arguments. You can specify the property name/property value pairs in a
cell array. You can use a mixture of strings, structures, and cell arrays.
Use the get function to determine the list of properties supported by an
image acquisition object.

out = imaqfind(S) returns a cell array, out, of image acquisition
objects whose property values match those defined in the structure S.
The field names of S are image acquisition object property names and
the field values are the requested property values.

out = imaqfind(obj, PropertyName, Value, PropertyName2,
Value2,...) restricts the search for matching parameter/value pairs
to the image acquisition objects listed in obj. obj can be an array of
image acquisition objects.

12-16

imaqfind

Note When searching for properties with specific values, imaqfind
performs case-sensitive searches. For example, if the value of an object’s
Name property is 'MyObject', imaqfind does not find a match if you
specify 'myobject'. Note, however, that searches for properties that
have an enumerated list of possible values are not case sensitive. For
example, imaqfind will find an object with a Running property value of
'Off' or 'off'. Use the get function to determine the exact spelling
of a property value.

Examples To illustrate various imaqfind syntaxes, first create two video input
objects.

obj1 = videoinput('matrox',1,'M_RS170','Tag','FrameGrabber');
obj2 = videoinput('winvideo',1,'RGB24_320x240','Tag','Webcam');

Now use imaqfind to find these objects by type and tag.

out1 = imaqfind('Type', 'videoinput')
out2 = imaqfind('Tag', 'FrameGrabber')
out3 = imaqfind({'Type', 'Tag'}, {'videoinput', 'Webcam'})

See Also get, videoinput

12-17

imaqhelp

Purpose Image acquisition object function and property help

Syntax imaqhelp
imaqhelp(Name)
imaqhelp(obj)
imaqhelp(obj,Name)
out = imaqhelp(...)

Description imaqhelp provides a complete listing of image acquisition object
functions.

imaqhelp(Name) provides online help for the function or property
specified by the text string Name.

imaqhelp(obj) displays a listing of functions and properties for the
image acquisition object obj along with the online help for the object’s
constructor. obj must be a 1-by-1 image acquisition object.

imaqhelp(obj,Name) displays the help for the function or property
specified by the text string Name for the image acquisition object obj.

If Name is a device-specific property name, obj must be provided.

out = imaqhelp(...) returns the help text in string out.

When property help is displayed, the names in the “See Also” section
that contain all uppercase letters are function names. The names that
contain a mixture of upper- and lowercase letters are property names.

When function help is displayed, the “See Also” section contains only
function names.

Examples Getting general function and property help.

imaqhelp('videoinput')
out = imaqhelp('videoinput');
imaqhelp set
imaqhelp LoggingMode

Getting property help with device-specific information.

12-18

imaqhelp

vid = videoinput('dt', 1);
src = getselectedsource(vid);
imaqhelp(vid, 'TriggerType')
imaqhelp(src, 'FrameRate')

See Also propinfo

12-19

imaqhwinfo

Purpose Information about available image acquisition hardware

Syntax out = imaqhwinfo
out = imaqhwinfo(adaptorname)
out = imaqhwinfo(adaptorname,field)
out = imaqhwinfo(adaptorname, deviceID)
out = imaqhwinfo(obj)
out = imaqhwinfo(obj,field)

Description out = imaqhwinfo returns out, a structure that contains information
about the image acquisition adaptors available on the system. An
adaptor is the interface between MATLAB and the image acquisition
devices connected to the system. The adaptor’s main purpose is to pass
information between MATLAB and an image acquisition device via its
driver.

out = imaqhwinfo(adaptorname) returns out, a structure that
contains information about the adaptor specified by the text string
adaptorname. The information returned includes adaptor version and
available hardware for the specified adaptor. To get a list of valid
adaptor names, use the imaqhwinfo syntax.

out = imaqhwinfo(adaptorname,field) returns the value of the field
specified by the text string field for the adaptor specified by the text
string adaptorname. The argument can be a single string or a cell array
of strings. If field is a cell array, out is a 1-by-n cell array where
n is the length of field. To get a list of valid field names, use the
imaqhwinfo('adaptorname') syntax.

out = imaqhwinfo(adaptorname, deviceID) returns out, a structure
containing information about the device specified by the numeric device
ID deviceID. The deviceID can be a scalar or a vector. If deviceID is a
vector, out is a 1-by-n structure array where n is the length of deviceID.

out = imaqhwinfo(obj) returns out, a structure that contains
information about the specified image acquisition object obj. The
information returned includes the adaptor name, device name, video
resolution, native data type, and device driver name and version. If obj

12-20

imaqhwinfo

is an array of device objects, then out is a 1-by-n cell array of structures
where n is the length of obj.

out = imaqhwinfo(obj,field) returns the information in the field
specified by field for the device object obj. field can be a single field
name or a cell array of field names. out is an m-by-n cell array where m
is the length of obj and n is the length of field. You can return a list of
valid field names with the imaqhwinfo(obj) syntax.

Note After you call imaqhwinfo once, hardware information is cached
by the toolbox. To force the toolbox to search for new hardware that
might have been installed while MATLAB was running, use imaqreset.

Examples This example returns information about all the adaptors available on
the system.

imaqhwinfo

ans =

InstalledAdaptors: {'matrox' 'winvideo'}
MATLABVersion: '7.4 (R2007a)'

ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

This example returns information about all the devices accessible
through a particular adaptor.

info = imaqhwinfo('winvideo')
info =

AdaptorDllName: [1x73 char]
AdaptorDllVersion: '2.1 (R2007a)'

AdaptorName: 'winvideo'
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

12-21

imaqhwinfo

This example returns information about a specific device accessible
through a particular adaptor. You identify the device by its device ID.

dev_info = imaqhwinfo('winvideo', 1)

dev_info =

DefaultFormat: 'RGB555_128x96'
DeviceFileSupported: 0

DeviceName: 'IBM PC Camera'
DeviceID: 1

ObjectConstructor: 'videoinput('winvideo', 1)'
SupportedFormats: {1x34 cell}

This example gets information about the device associated with a
particular video input object.

obj = videoinput('winvideo', 1);

obj_info = imaqhwinfo(obj)

obj_info =

AdaptorName: 'winvideo'
DeviceName: 'IBM PC Camera'
MaxHeight: 96
MaxWidth: 128

NativeDataType: 'uint8'
TotalSources: 1

VendorDriverDescription: 'Windows WDM Compatible Driver'
VendorDriverVersion: 'DirectX 9.0'

This example returns the value of a particular field in the device
information associated with a particular video input object.

field_info = imaqhwinfo(vid,'adaptorname')
field_info =

12-22

imaqhwinfo

winvideo

See Also imaqhelp, imaqreset

12-23

imaqmem

Purpose Limit memory or display memory usage for the Image Acquisition
Toolbox software

Syntax mem = imaqmem
imaqmem(field)
imaqmem(limit)

Description mem = imaqmem returns a structure containing the following fields:

Field Description

MemoryLoad Number between 0 and 100 that gives a general
idea of current memory utilization

TotalPhys Total number of bytes of physical memory
AvailPhys Number of bytes of physical memory currently

available
TotalPageFile Total number of bytes that can be stored in the

paging file
AvailPageFile Number of bytes available in the paging file
TotalVirtual Total number of bytes that can be addressed

in the user mode portion of the virtual address
space

AvailVirtual Number of bytes of unreserved and uncommitted
memory in the user mode portion of the virtual
address space

FrameMemoryLimit Total number of bytes image acquisition frames
can occupy in memory

By default, the toolbox sets this limit to equal
all available physical memory at the time the
toolbox is first used or queried.

FrameMemoryUsed Number of bytes currently allocated by the Image
Acquisition Toolbox software

12-24

imaqmem

imaqmem(field) returns information for the field specified by the text
string field.

imaqmem(limit) configures the frame memory limit, in bytes, for the
Image Acquisition Toolbox software. limit is used to determine the
maximum amount of memory the toolbox can use for logging image
frames.

Note Configuring the frame memory limit does not remove any logged
frames from the image acquisition memory buffer. To remove frames
from the buffer, you can bring them into the MATLAB workspace,
using the getdata function, or remove them from memory, using the
flushdata function.

Examples Use imaqmem to get information about system memory.

imaqmem

ans =

MemoryLoad: 85
TotalPhys: 263766016
AvailPhys: 37306368

TotalPageFile: 643878912
AvailPageFile: 391446528
TotalVirtual: 2.1474e+009
AvailVirtual: 1.6307e+009

FrameMemoryLimit: 38313984
FrameMemoryUsed: 0

Retrieve information about a specific field returned by imaqmem.

memlimit = imaqmem('FrameMemoryLimit')

memlimit =

12-25

imaqmem

38313984

Specify the amount of memory available for the toolbox to log image
frames (FrameMemoryLimit).

imaqmem(30000000)

ans =

MemoryLoad: 85
TotalPhys: 263766016
AvailPhys: 37634048

TotalPageFile: 643878912
AvailPageFile: 391479296
TotalVirtual: 2.1474e+009
AvailVirtual: 1.6307e+009

FrameMemoryLimit: 30000000
FrameMemoryUsed: 0

See Also flushdata, getdata, videoinput

12-26

imaqmontage

Purpose Sequence of image frames as montage

Syntax imaqmontage(frames)
imaqmontage(obj)
imaqmontage(...,CLIM)
imaqmontage(..., 'CLim', CLIM, 'Parent', PARENT)
h = imaqmontage(...)

Description imaqmontage(frames) displays a montage of image frames in a
MATLAB figure window using the imagesc function.

frames can be any data set returned by getdata, peekdata, or
getsnapshot.

imaqmontage(obj) calls the getsnapshot function on video input object
obj and displays a single image frame in a MATLAB figure window
using the imagesc function. obj must be a 1-by-1 video input object.

imaqmontage(...,CLIM) displays a montage of image frames, where
CLIM is a two-element vector, [CLOW CHIGH], specifying the image
scaling. Use CLIM to specify a scaling value when overscaling the image
data is a risk, for example, when you are working with devices that
provide data in a 12-bit format.

imaqmontage(..., 'CLim', CLIM, 'Parent', PARENT) where CLIM is
as noted previously, and PARENT is a valid AXES object that allows you
to specify where the montage is displayed. One or both property/value
pairs can be specified. See the example below.

h = imaqmontage(...) returns a handle to an image object.

Examples Construct a video input object associated with a Matrox device at ID 1.

obj = videoinput('matrox', 1);

Initiate an acquisition and access the logged data.

start(obj);
data = getdata(obj);

12-27

imaqmontage

Create an axes object.

a = axes;

Display each image frame acquired on axes a.

imaqmontage(data, 'Parent', a);

Remove the video input object from memory.

delete(obj);

See Also getdata, getsnapshot, imaqhelp, peekdata

12-28

imaqreset

Purpose Disconnect and delete all image acquisition objects

Syntax imaqreset

Description imaqreset deletes any image acquisition objects that exist in memory
and unloads all adaptors loaded by the toolbox. As a result, the image
acquisition hardware is reset.

imaqreset is the image acquisition command that returns MATLAB to
the known state of having no image acquisition objects and no loaded
image acquisition adaptors.

You can use imaqreset to force the toolbox to search for new hardware
that might have been installed while MATLAB was running.

Note imaqreset should not be called from any of the callbacks of a
videoinput object, such as the StartFcn or FramesAcquiredFcn.

See Also delete, videoinput

12-29

imaqtool

Purpose Launch Image Acquisition Tool

Syntax imaqtool
imaqtool(file)

Description imaqtool launches an interactive GUI to allow you to explore, configure,
and acquire data from your installed and supported image acquisition
devices.

The functionality of the Image Acquisition Toolbox software is available
in this desktop application. You connect directly to your hardware in
the tool and can preview and acquire image data. You can log the
data to MATLAB in several formats, and also generate an AVI file,
right from the tool.

The Image Acquisition Tool provides a desktop environment that
integrates a preview/acquisition area with Acquisition Parameters so
that you can change settings and see the changes dynamically applied
to your image data.

For complete information on how to use the Image Acquisition Tool, see
Using the Image Acquisition Tool GUI.

imaqtool(file) starts the tool and then immediately reads an Image
Acquisition Tool configuration file, where file is the name of an IAT-file
that you previously saved.

This configuration file contains parameter settings that you save using
File > Save Configuration in the tool.

12-30

islogging

Purpose Determine whether video input object is logging

Syntax bool = islogging(obj)

Description bool = islogging(obj) returns true if the video input object obj is
logging data, otherwise false. A video input object is logging if the
value of its Logging property is set to 'on'.

If obj is an array of video input objects, bool is a logical array where
each element in bool represents the corresponding element in obj.
If an object in obj is logging data, islogging sets the corresponding
element in bool to true, otherwise false. If any of the video input
objects in obj is invalid, islogging returns an error.

Examples Create a video input object.

vid = videoinput('winvideo');

To put the video input object in a logging state, start acquiring data.
The example acquires 50 frames to increase the amount of time that
the object remains in logging state.

set(vid,'FramesPerTrigger',50)
start(vid)

When the call to the start function returns, and the object is still
acquiring data, use islogging to check the state of the object.

bool = islogging(vid)
bool =

1

Create a second video input object.

vid2 = videoinput('winvideo');

12-31

islogging

Start one of the video input objects again, such as vid, and use
islogging to determine which of the two objects is logging.

start(vid)
bool = islogging([vid vid2])

bool =

1 0

See Also isrunning, isvalid, videoinput

Properties

Logging, LoggingMode

12-32

isrunning

Purpose Determine whether video input object is running

Syntax bool = isrunning(obj)

Description bool = isrunning(obj) returns true if the video input object obj is
running, otherwise false. A video input object is running if the value of
its Running property is set to 'on'.

If obj is an array of video input objects, bool is a logical array where
each element in bool represents the corresponding element in obj. If an
object in obj is running, the isrunning function sets the corresponding
element in bool to true, otherwise false. If any of the video input
objects in obj is invalid, isrunning returns an error.

Examples Create a video input object, configure a manual trigger, and then start
the object. This puts the object in running state.

vid = videoinput('winvideo');
triggerconfig(vid,'manual')
start(vid)

Use isrunning to check the state of the object.

bool = isrunning(vid)
bool =

1

Create a second video input object.

vid2 = videoinput('winvideo');

Use isrunning to determine which of the two objects is running.

bool = isrunning([vid vid2])
bool =

1 0

See Also islogging, isvalid, start, stop, videoinput

12-33

isrunning

Properties

Running

12-34

isvalid

Purpose Determine whether image acquisition object is associated with image
acquisition device

Syntax bool = isvalid(obj)

Description bool = isvalid(obj) returns true if the video input object obj is
valid, otherwise false. An object is an invalid image acquisition object
if it is no longer associated with any hardware; that is, the object was
deleted using the delete function. If this is the case, obj should be
cleared from the workspace.

If obj is an array of video input objects, bool is a logical array where
each element in bool represents the corresponding element in obj. If
an object in obj is valid, the isvalid function sets the corresponding
element in bool to true, otherwise false.

See Also delete, imaqfind, videoinput

12-35

load

Purpose Load image acquisition object into MATLAB workspace

Syntax load filename
load filename obj1 obj2 ...
S = load(filename,obj1,obj2,...)

Description load filename returns all variables from the MAT-file filename to
the MATLAB workspace.

load filename obj1 obj2 ... returns the specified image acquisition
objects (obj1, obj2, etc.) from the MAT-file specified by filename to
the MATLAB workspace.

S = load(filename,obj1,obj2,...) returns the structure S with
the specified image acquisition objects (obj1, obj2, etc.) from the
MAT-file filename. The field names in S match the names of the image
acquisition objects that were retrieved. If no objects are specified, then
all variables existing in the MAT-file are loaded.

Values for read-only properties are restored to their default values
when loaded. For example, the Running property is restored to 'off'.
Use propinfo to determine if a property is read only.

Examples obj = videoinput('winvideo', 1);
set(obj, 'SelectedSourceName', 'input1')
save fname obj
load fname
load('fname', 'obj');

See Also imaqhelp, propinfo, save

12-36

obj2mfile

Purpose Convert video input objects to MATLAB code

Syntax obj2mfile(obj,filename)
obj2mfile(obj,filename,syntax)
obj2mfile(obj,filename,syntax,mode)
obj2mfile(obj,filename,syntax,mode,reuse)

Description obj2mfile(obj,filename) converts the video input object obj into an
M-file with the name specified by filename. The M-file contains the
MATLAB code required to create the object and set its properties. obj
can be a single video input object or an array of objects.

The obj2mfile function simplifies the process of restoring an object
with specific property settings and can be used to create video input
objects. obj2mfile also creates and configures the video source object
associated with the video input object.

If filename does not specify an extension or if it has an extension
other than the MATLAB M-file extension (.m), obj2mfile appends .m
to the end of filename. To recreate obj, execute the M-file by calling
filename.

If the UserData property of the object is set, or if any of the callback
properties is set to a cell array or to a function handle, obj2mfile writes
the data stored in those properties to a MAT-file. obj2mfile gives the
MAT-file the same name as the M-file, but uses the .mat filename
extension. obj2mfile creates the MAT-file in the same directory as
the M-file.

Note obj2mfile does not restore the values of read-only properties.
For example, if an object is saved with a Logging property set to 'on',
the object is recreated with a Logging property set to 'off' (the default
value). Use the propinfo function to determine if a property is read
only.

12-37

obj2mfile

obj2mfile(obj,filename,syntax) converts obj to the equivalent
MATLAB code where syntax specifies how obj2mfile assigns values
to properties of the object. syntax can be either of the following text
strings. The default value is enclosed in braces ({}).

String Description

{'set'} obj2mfile uses the set function when specifying
property values.

'dot' obj2mfile uses subscripted assignment (dot
notation) when specifying property values.

obj2mfile(obj,filename,syntax,mode) converts obj to the
equivalent MATLAB code where mode specifies which properties are
configured. mode can be either of the following strings. The default
value is enclosed in braces ({}).

String Description

{'modified'} Configure writable properties that are not set to
their default values.

'all' Configure all writable properties. obj2mfile does
not restore the values of read-only properties.

Note that obj2mfile(obj,filename,mode) is a valid syntax. If the
syntax argument is not specified, obj2mfile uses the default value.

obj2mfile(obj,filename,syntax,mode,reuse) converts obj to the
equivalent MATLAB code where reuse specifies whether obj2mfile
searches for a reusable video input object or creates a new one. reuse
can be either of the following strings. The default value is enclosed in
braces ({}).

12-38

obj2mfile

String Description

{'reuse'} Find and modify an existing object, if the existing object
is associated with the same adaptor and the values of
the DeviceID, VideoFormat, and Tag properties match
the object being created. If no matching object can be
found, obj2mfile creates a new object.

'create' Create a new object regardless of whether there are
reusable objects.

Note that obj2mfile(obj,filename,reuse) is a valid syntax. If the
syntax and mode arguments are not specified, obj2mfile uses their
default values.

Examples Create a video input object.

vidobj = videoinput('winvideo', 1, 'RGB24_640x480');

Configure several properties of the video input object.

set(vidobj, 'FramesPerTrigger', 100);
set(vidobj, 'FrameGrabInterval', 2);
set(vidobj, 'Tag', 'CAM1');

Retrieve the selected video source object associated with the video
input object.

src = getselectedsource(vidobj);

Configure the properties of the video source object.

set(src, 'Contrast', 85);
set(src, 'Saturation', 125);

Save the video input object.

obj2mfile(vidobj, 'myvidobj.m', 'set', 'modified');

Delete the object and clear it from the workspace.

12-39

obj2mfile

delete(vidobj);
clear vidobj;

Execute the M-file to recreate the object. Note that obj2mfile creates
and configures the associated video source object as well.

vidObj = myvidobj;

See Also getselectedsource, imaqhelp, propinfo, set, videoinput

12-40

peekdata

Purpose Most recently acquired image data

Syntax data = peekdata(obj,frames)

Description data = peekdata(obj,frames) returns data containing the latest
number of frames specified by frames. If frames is greater than the
number of frames currently acquired, all available frames are returned
with a warning message stating that the requested number of frames
was not available. obj must be a 1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

H Image height, as specified in the object’s ROIPosition
property

W Image width, as specified in the object’s ROIPosition
property

B Number of color bands, as specified in the NumberOfBands
property

F Number of frames returned

data is returned to the MATLAB workspace in its native data type
using the color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the
returned data. Use imaqmontage to view multiple frames at once.

peekdata is a nonblocking function that immediately returns image
frames and execution control to the MATLAB workspace. Not all
requested data might be returned.

Note peekdata provides a look at the data; it does not remove data
from the memory buffer. The object’s FramesAvailable property value
is not affected by the number of frames returned by peekdata.

12-41

peekdata

The behavior of peekdata depends on the settings of the Running and
the Logging properties.

Running Logging Object State Result

On Off The object has been started
but is waiting for a trigger.
(TriggerType is set to 'manual'
or 'hardware'). No data has
been acquired so none is
available.

peekdata returns a single
frame of data and issues a
warning, if you requested more
than one frame.

On On The object has been started,
a trigger has executed, and
the object is actively acquiring
data.

peekdata returns the n most
recently acquired frames of
data. The frames are not
removed from the buffer.

Off Off The object has stopped running
because it acquired the
requested number of frames or
you called the stop function.

peekdata can be called once
to return the n most recently
acquired frames of data,
assuming FramesAvailable
is greater than 0. Otherwise,
peekdata returns an error.
The frames returned are not
removed from the memory
buffer.

The number of frames available to peekdata is determined by recalling
the last frame returned by a previous peekdata call, and the number of
frames that were acquired since then.

peekdata can be used only after the start command is issued and
while the object is running. peekdata can also be called once after obj
has stopped running.

See Also getdata, getsnapshot, imaqhelp, imaqmontage, propinfo, start

12-42

preview

Purpose Preview of live video data

Syntax preview(obj)
preview(obj,himage)
himage = preview(...)

Description preview(obj) creates a Video Preview window that displays live video
data for video input object obj. The window also displays the timestamp
and video resolution of each frame, and the current status of obj. The
Video Preview window displays the video data at 100% magnification
(one screen pixel represents one image pixel). The size of the preview
image is determined by the value of the video input object ROIPosition
property.

Components of a Video Preview Window

The Video Preview window displays image data in its native color
space, indicated by the default value of the video input object
ReturnedColorSpace property. To determine this value, use propinfo.

12-43

preview

The Video Preview window remains active until it is either stopped
using stoppreview or closed using closepreview. If you delete the
object, by calling delete(obj), the Video Preview window stops
previewing and closes automatically.

preview(obj,himage) displays live video data for video input object
obj in the image object specified by the handle himage. preview scales
the image data to fill the entire area of the image object but does not
modify the values of any image object properties. Use this syntax to
preview video data in a custom GUI of your own design (see Examples).

himage = preview(...) returns himage, a handle to the image object
containing the previewed data. To obtain a handle to the figure window
containing the image object, use the ancestor function. For more
information about using image objects, see image. See the Custom
Update Function section for more information about the image object
returned.

Image data is previewed in its native color space, indicated by the
default value of the ReturnedColorSpace property of the video input
object. To determine the default value for the ReturnedColorSpace
property, use propinfo.

Notes The behavior of the Video Preview window depends on the video input
object’s current state and trigger configuration.

Object State Preview Window Behavior

Running=off Displays a live view of the image being acquired
from the device, for all trigger types. The image is
updated to reflect changes made to configurations of
object properties. (The FrameGrabInterval property
is ignored until a trigger occurs.)

12-44

preview

Object State Preview Window Behavior

Running=on If TriggerType is set to immediate or manual, the
Video Preview window continues to update the image
displayed.

If TriggerType is set to hardware, the Video Preview
window stops updating the image displayed until a
trigger occurs.

Logging=on Video Preview window might drop some data frames,
but this will not affect the frames logged to memory
or disk.

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool now support the
display of up to 16-bit image data. The Preview window was designed to
only show 8-bit data, but many cameras return 10-, 12-, 14-, or 16-bit
data. The Preview window display now supports these higher bit-depth
cameras.

Custom
Update
Function

preview creates application-defined data for the image object, himage,
assigning it the name 'UpdatePreviewWindowFcn' and setting
its value to an empty array ([]). You can configure the value of
the 'UpdatePreviewWindowFcn' application data and retrieve its
value using the MATLAB setappdata and getappdata functions,
respectively.

If you set the value of 'UpdatePreviewWindowFcn' to a function
handle, preview invokes the function every time a new image frame is
available. You can use this function to define custom processing of the
previewed image data. When preview invokes the function handle you
specify, it passes three arguments to your function:

• obj — The video input object being previewed

12-45

preview

• event — An event structure containing image frame information.
For more information, see below.

• himage— A handle to the image object that is being updated

12-46

preview

The event structure contains the following fields:

Field Description

Data Current image frame specified as an H-by-W-by-B
matrix where H and W are the image height and
width, respectively, as specified in the ROIPosition
property, and B is the number of color bands, as
specified in the NumberOfBands property.

Resolution String specifying current image width and height, as
defined by the ROIPosition property.

Status String describing the current acquisition status of the
video input object.

Timestamp String specifying the timestamp associated with the
current image frame.

Examples Create a customized GUI.

figure('Name', 'My Custom Preview Window');
uicontrol('String', 'Close', 'Callback', 'close(gcf)');

Create an image object for previewing.

vidRes = get(obj, 'VideoResolution');
nBands = get(obj, 'NumberOfBands');
hImage = image(zeros(vidRes(2), vidRes(1), nBands));
preview(obj, hImage);

For more information on customized GUIs, see “Previewing Data in
Custom GUIs” on page 2-12.

See Also ancestor, closepreview, image, imaqhelp, stoppreview

12-47

propinfo

Purpose Property characteristics for image acquisition objects

Syntax out = propinfo(obj)
out = propinfo(obj,PropertyName)

Description out = propinfo(obj) returns the structure out whose field names
are the names of all the properties supported by obj. obj must be a
1-by-1 image acquisition object. The value of each field is a structure
containing the fields shown below.

Field Name Description

Type Data type of the property. Possible values are
'any', 'callback', 'double', 'string', and
'struct'.

Constraint Type of constraint on the property value. Possible
values are 'bounded', 'callback', 'enum', and
'none'.

ConstraintValue List of valid string values or a range of valid
values.

DefaultValue Default value for the property.
ReadOnly Condition under which a property is read only:

• 'always'— Property cannot be configured.

• 'whileRunning' — Property cannot be
configured while Running is set to on.

• 'never' — Property can be configured at any
time.

DeviceSpecific 1 if the property is device specific; otherwise, 0
(zero).

out = propinfo(obj,PropertyName) returns the structure out for
the property specified by PropertyName. If PropertyName is a cell

12-48

propinfo

array of strings, propinfo returns a structure for each property, stored
in a cell array.

Examples Create the video input object vid.

vid = videoinput('winvideo',1);

Capture all property information for all properties.

out = propinfo(vid);

Access property information for a particular property.

out1 = propinfo(vid,'LoggingMode');

See Also imaqhelp

12-49

save

Purpose Save image acquisition objects to MAT-file

Syntax save filename
save filename obj1 obj2 ...
save(filename,obj1,obj2,...)

Description save filename saves all variables in the MATLAB workspace to the
MAT-file filename. If filename does not include a file extension, save
appends the .MAT extension to the filename.

save filename obj1 obj2 ... saves the specified image acquisition
objects (obj1, obj2, etc.) to the MAT-file filename.

save(filename,obj1,obj2,...) is the functional form of the
command, where the file name and image acquisition objects must be
specified as text strings. If no objects are specified, then all variables
existing in the MATLAB workspace are saved.

Note Any data associated with the image acquisition object is not
stored in the MAT-file. To save the data, bring it into the MATLAB
workspace (using the getdata function), and then save the variable
to the MAT-file.

To return variables from the MAT-file to the MATLAB workspace, use
the load command. Values for read-only properties are restored to
their default values upon loading. For example, the Running property is
restored to 'off'. Use the propinfo function to determine if a property
is read only.

Examples obj = videoinput('winvideo', 1);
set(obj, 'SelectedSourceName', 'input1')
save fname obj
set(obj, 'TriggerFcn', {'mycallback', 5});
save('fname1', 'obj')

12-50

save

See Also imaqhelp, load, propinfo

12-51

set

Purpose Configure or display image acquisition object properties

Syntax set(obj)
prop_struct = set(obj)
set(obj,PropertyName)
prop_cell = set(obj,PropertyName)
set(obj,PropertyName,PropertyValue,...)
set(obj,S)
set(obj,PN,PV)

Description set(obj) displays property names and any enumerated values for all
configurable properties of image acquisition object obj. obj must be
a single image acquisition object.

prop_struct = set(obj) returns the property names and any
enumerated values for all configurable properties of image acquisition
object obj. obj must be a single image acquisition object. The return
value prop_struct is a structure whose field names are the property
names of obj, and whose values are cell arrays of possible property
values or empty cell arrays if the property does not have a finite set
of possible string values.

set(obj,PropertyName) displays the possible values for the specified
property, PropertyName, of image acquisition object obj. obj must be
a single image acquisition object. Use the set(obj) syntax to get a
list of all the properties for a particular image acquisition object that
can be set.

prop_cell = set(obj,PropertyName) returns the possible values
for the specified property, PropertyName, of image acquisition object
obj. obj must be a single image acquisition object. The returned array
prop_cell is a cell array of possible value strings or an empty cell array
if the property does not have a finite set of possible string values.

set(obj,PropertyName,PropertyValue,...) configures the property
specified by the text string PropertyName to the value specified by
PropertyValue for image acquisition object obj. You can specify
multiple property name/property value pairs in a single statement. obj
can be a single image acquisition object or a vector of image acquisition

12-52

set

objects, in which case set configures the property values for all the
image acquisition objects specified.

set(obj,S) configures the properties of obj with the values specified in
S, where S is a structure whose field names are object property names.

set(obj,PN,PV) configures the properties specified in the cell array of
strings, PN, to the corresponding values in the cell array PV, for the
image acquisition object obj. PN must be a vector. If obj is an array of
image acquisition objects, PV can be an M-by-N cell array, where M
is equal to the length of the image acquisition object array and N is
equal to the length of PN. In this case, each image acquisition object is
updated with a different set of values for the list of property names
contained in PN.

Note Parameter/value string pairs, structures, and parameter/value
cell array pairs can be used in the same call to set.

Examples These examples illustrate the various ways to use the set function to
set the values of image acquisition object properties.

set(obj, 'FramesPerTrigger', 15, 'LoggingMode', 'disk');
set(obj, {'TimerFcn', 'TimerPeriod'}, {@imaqcallback, 25});
set(obj, 'Name', 'MyObject');
set(obj, 'SelectedSourceName')

See Also get, imaqfind, videoinput

12-53

start

Purpose Obtain exclusive use of image acquisition device

Syntax start(obj)

Description start(obj) obtains exclusive use of the image acquisition device
associated with the video input object obj and locks the device’s
configuration. Starting an object is a necessary first step to acquire
image data, but it does not control when data is logged.

obj can either be a 1-by-1 video input object or an array of video input
objects.

Data logging is controlled with the TriggerType property.

Trigger Type Logging Behavior

'hardware' Data logging occurs when the condition specified
in the object’s TriggerCondition property is met
via the TriggerSource.

'immediate' Data logging occurs immediately.
'manual' Data logging occurs when the trigger function is

called.

Use the triggerconfig function to configure the object’s trigger
settings.

When an acquisition is started, obj performs the following operations:

1 Transfers the object’s configuration to the associated hardware.

2 Executes the object’s StartFcn callback.

3 Sets the object’s Running property to 'On'.

If the object’s StartFcn errors, the hardware is never started and the
object’s Running property remains 'Off'.

The start event is recorded in the object’s EventLog property.

12-54

start

An image acquisition object stops running when one of the following
conditions is met:

• The stop function is issued.

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

• A run-time error occurs.

• The object’s Timeout value is reached.

Examples The start function can be called by a video input object’s event callback.

obj.StopFcn = {'start'};

See Also imaqfind, imaqhelp, propinfo, stop, trigger, triggerconfig

12-55

stop

Purpose Stop video input object

Syntax stop(obj)

Description stop(obj) halts an acquisition associated with the video input object
obj. obj can be either a single video input object or an array of video
input objects.

The stop function

• Sets the object’s Running property to 'Off'

• Sets the object’s Logging property to 'Off', if needed

• Executes the object’s StopFcn callback

An image acquisition object can also stop running under one of the
following conditions:

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

• A run-time error occurs.

• The object’s Timeout value is reached.

The stop event is recorded in the object’s EventLog property.

Examples The stop function can be called by a video input object’s event callback.

obj.TimerFcn = {'stop'};

See Also imaqfind, start, trigger, propinfo, videoinput

12-56

stoppreview

Purpose Stop previewing video data

Syntax stoppreview(obj)

Description stoppreview(obj) stops the previewing of video data from image
acquisition object obj.

To restart previewing, call preview again.

Examples Create a video input object and open a Video Preview window.

vid = videoinput('winvideo',1);
preview(vid)

Stop previewing video data.

stoppreview(vid);

Restart previewing.

preview(vid)

See Also closepreview, preview

12-57

trigger

Purpose Initiate data logging

Syntax trigger(obj)

Description trigger(obj) initiates data logging for the video input object obj. obj
can be either a single video input object or an array of video input
objects.

The trigger function

• Executes the object’s TriggerFcn callback

• Records the absolute time of the first trigger event in the object’s
InitialTriggerTime property

• Configures the object’s Logging property to 'On'

obj must be running and its TriggerType property must be set to
'manual'. To start an object running, use the start function.

The trigger event is recorded in the object’s EventLog property.

Examples The trigger function can be called by a video input object’s event
callback.

obj.StartFcn = @trigger;

See Also imaqfind, start, stop, videoinput

12-58

triggerconfig

Purpose Configure video input object trigger properties

Syntax triggerconfig(obj,type)
triggerconfig(obj,type,condition)
triggerconfig(obj,type,condition,source)
config = triggerconfig(obj)
triggerconfig(obj,config)

Description triggerconfig(obj,type) configures the value of the TriggerType
property of the video input object obj to the value specified by
the text string type. For a list of valid TriggerType values, use
triggerinfo(obj). type must specify a unique trigger configuration.

obj can be either a single video input object or an array of video input
objects. If an error occurs, any video input objects in the array that have
already been configured are returned to their original configurations.

triggerconfig(obj,type,condition) configures the values of
the TriggerType and TriggerCondition properties of the video
input object obj to the values specified by the text strings type and
condition. For a list of valid TriggerType and TriggerCondition
values, use triggerinfo(obj). type and condition must specify a
unique trigger configuration.

triggerconfig(obj,type,condition,source) configures the values of
the TriggerType, TriggerCondition, and TriggerSource properties
of the video input object obj to the values specified by the text
strings type, condition, and source, respectively. For a list of valid
TriggerType, TriggerCondition, and TriggerSource values, use
triggerinfo(obj).

config = triggerconfig(obj) returns a MATLAB structure config
containing the object’s current trigger configuration. obj must be a
1-by-1 video input object. The field names of config are TriggerType,
TriggerCondition, and TriggerSource. Each field contains the
current value of the object’s property.

triggerconfig(obj,config) configures the TriggerType,
TriggerCondition, and TriggerSource property values for video

12-59

triggerconfig

input object obj using config, a MATLAB structure with field names
TriggerType, TriggerCondition, and TriggerSource, each containing
the desired property value.

Examples Example 1

Construct a video input object.

vid = videoinput('winvideo', 1);

Configure trigger properties for the object.

triggerconfig(vid, 'manual')

Trigger the acquisition.

start(obj)
trigger(obj)

Remove video input object from memory.

delete(vid);

Example 2

This example uses a structure returned from triggerinfo to configure
trigger parameters.

Create a video input object.

vid = videoinput('winvideo', 1);

Use triggerinfo to get all valid configurations for the trigger
properties for the object.

config = triggerinfo(vid);

Pass one of the configurations to the triggerconfig function.

triggerconfig(vid,config(2));

Remove video input object from memory.

12-60

triggerconfig

delete(vid);

See Also imaqhelp, trigger, triggerinfo, videoinput

12-61

triggerinfo

Purpose Provide information about available trigger configurations

Syntax triggerinfo(obj)
triggerinfo(obj,type)
config = triggerinfo(...)

Description triggerinfo(obj) displays all available trigger configurations for the
video input object obj. obj can only be a 1-by-1 video input object.

triggerinfo(obj,type) displays the available trigger configurations
for the specified TriggerType, type, for the video input object obj. To
get a list of valid type values for a particular image acquisition object,
use triggerinfo(obj).

config = triggerinfo(...) returns config, an array of MATLAB
structures, containing all the valid trigger configurations for the video
input object obj. Each structure in the array contains these fields:

Field Description

TriggerType Name of the trigger type
TriggerCondition Condition that must be met before executing

a trigger
TriggerSource Hardware source used for triggering

You can pass one of the structures in config to the triggerconfig
function to specify the trigger configuration.

Examples This example illustrates how to use the triggerinfo function to
retrieve valid configurations of the TriggerType, TriggerSource, and
TriggerCondition properties.

1 Create a video input object.

vid = videoinput('winvideo');

12-62

triggerinfo

2 Get information about the available trigger configurations for this
object.

config = triggerinfo(vid)

config =

1x2 struct array with fields:
TriggerType
TriggerCondition
TriggerSource

3 View one of the trigger configurations returned by triggerinfo.

config(1)

ans =

TriggerType: 'immediate'
TriggerCondition: 'none'

TriggerSource: 'none'

See Also imaqhelp, triggerconfig

12-63

videoinput

Purpose Create video input object

Syntax obj = videoinput(adaptorname)
obj = videoinput(adaptorname,deviceID)
obj = videoinput(adaptorname,deviceID,format)
obj = videoinput(adaptorname,deviceID,format,P1,V1,...)

Description obj = videoinput(adaptorname) constructs the video input object
obj. A video input object represents the connection between MATLAB
and a particular image acquisition device. adaptorname is a text string
that specifies the name of the adaptor used to communicate with
the device. Use the imaqhwinfo function to determine the adaptors
available on your system.

obj = videoinput(adaptorname,deviceID) constructs a video input
object obj, where deviceID is a numeric scalar value that identifies a
particular device available through the specified adaptor, adaptorname.
Use the imaqhwinfo(adaptorname) syntax to determine the devices
available through the specified adaptor. If deviceID is not specified,
the first available device ID is used. As a convenience, a device’s name
can be used in place of the deviceID. If multiple devices have the same
name, the first available device is used.

obj = videoinput(adaptorname,deviceID,format) constructs a
video input object, where format is a text string that specifies a
particular video format supported by the device or the full path of a
device configuration file (also known as a camera file).

To get a list of the formats supported by a particular device, view the
DeviceInfo structure for the device that is returned by the imaqhwinfo
function. Each DeviceInfo structure contains a SupportedFormats
field. If format is not specified, the device’s default format is used.

When the video input object is created, its VideoFormat field contains
the format name or device configuration file that you specify.

obj = videoinput(adaptorname,deviceID,format,P1,V1,...) creates
a video input object obj with the specified property values. If an invalid
property name or property value is specified, the object is not created.

12-64

videoinput

The property name and property value pairs can be in any format
supported by the set function, i.e., parameter/value string pairs,
structures, or parameter/value cell array pairs.

To view a complete listing of video input object functions and properties,
use the imaqhelp function.

imaqhelp videoinput

Remarks The toolbox chooses the first available video source object as the
selected source and specifies this video source object’s name in the
object’s SelectedSourceName property. Use getselectedsource(obj)
to access the video source object that is used for acquisition.

Examples Construct a video input object.

obj = videoinput('matrox', 1);

Select the source to use for acquisition.

set(obj, 'SelectedSourceName', 'input1')

View the properties for the selected video source object.

src_obj = getselectedsource(obj);
get(src_obj)

Preview a stream of image frames.

preview(obj);

Acquire and display a single image frame.

frame = getsnapshot(obj);
image(frame);

Remove video input object from memory.

delete(obj);

12-65

videoinput

See Also delete, imaqfind, isvalid, preview

12-66

wait

Purpose Wait until image acquisition object stops running or logging

Syntax wait(obj)
wait(obj,waittime)
wait(obj,waittime,state)

Description wait(obj) blocks the MATLAB command line until the video input
object obj stops running (Running = 'off'). obj can be either a single
video input object or an array of video input objects. When obj is
an array of objects, the wait function waits until all objects in the
array stop running. If obj is not running or is an invalid object, wait
returns immediately. The wait function can be useful when you want to
guarantee that data is acquired before another task is performed.

wait(obj,waittime) blocks the MATLAB command line until the video
input object or array of objects obj stops running or until waittime
seconds have expired, whichever comes first. By default, waittime is
set to the value of the object’s Timeout property.

wait(obj,waittime,state) blocks the MATLAB command line until
the video input object or array of objects obj stops running or logging,
or until waittime seconds have expired, whichever comes first. state
can be either of the following text strings. The default value is enclosed
in braces ({}).

State Description

{'running'} Blocks until the value of the object’s Running property
is 'off'.

'logging' Blocks until the value of the object’s Logging property
is 'off'.

Note The video input object’s stop event callback function (StopFcn)
might not be called before this function returns.

12-67

wait

An image acquisition object stops running or logging when one of the
following conditions is met:

• The stop function is issued.

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

• A run-time error occurs.

• The object’s Timeout value is reached.

Examples Create a video input object.

vid = videoinput('winvideo');

Specify an acquisition that should take several seconds. The example
sets the FramesPerTrigger property to 300.

vid.FramesPerTrigger = 300;

Start the object. Because it is configured with an immediate trigger (the
default), acquisition begins when the object is started. The example
calls the wait function after calling the start function. Notice how wait
blocks the MATLAB command line until the acquisition is complete.

start(vid), wait(vid);

See Also imaqhelp, start, stop, trigger, propinfo

12-68

13

Property Reference

This chapter contains brief descriptions of all the properties of the video input
object and the properties of the video source object that are common to all
video source objects. Video source objects can also support device-specific
properties that vary depending on the image acquisition hardware. To get
help on these device-specific properties, use the imaqhelp function, specifying
the video source object as an argument.

Video Input Objects (p. 13-2) Image acquisition object properties,
arranged by category

Video Source Objects (p. 13-6) Video source object properties,
arranged alphabetically

13 Property Reference

Video Input Objects

General (p. 13-2) General image acquisition properties
Callback (p. 13-3) Properties related to callback events
Triggering (p. 13-4) Properties related to triggering
Acquisition Source (p. 13-5) Properties related to video

acquisition source

General

BayerSensorAlignment Specify sensor alignment for Bayer
demosaicing

DeviceID Identify image acquisition device
represented by video input object

DiskLogger Specify MATLAB AVI file object
used to log data

DiskLoggerFrameCount Specify number of frames written to
disk

EventLog Store information about events
FrameGrabInterval Specify how often to acquire frame

from video stream
FramesAcquired Indicate total number of frames

acquired
FramesAvailable Indicate number of frames available

in memory buffer
FramesPerTrigger Specify number of frames to acquire

per trigger using selected video
source

Logging Indicate whether object is currently
logging data

LoggingMode Specify destination for acquired data

13-2

Video Input Objects

Name Specify name of image acquisition
object

NumberOfBands Indicate number of color bands in
data to be acquired

Previewing Indicate whether object is currently
previewing data in separate window

ReturnedColorSpace Specify color space used in MATLAB
ROIPosition Specify region-of-interest (ROI)

window
Running Indicate whether video input object

is ready to acquire data
Tag Specify descriptive text to associate

with image acquisition object
Timeout Specify how long to wait for image

data
Type Identify type of image acquisition

object
UserData Store data to associate with image

acquisition object
VideoFormat Specify video format or name of

device configuration file
VideoResolution Indicate width and height of

incoming video stream

Callback

ErrorFcn Specify M-file callback function to
execute when run-time error occurs

FramesAcquiredFcn Specify M-file executed when
specified number of frames have
been acquired

13-3

13 Property Reference

FramesAcquiredFcnCount Specify number of frames that must
be acquired before frames acquired
event is generated

StartFcn Specify M-file executed when start
event occurs

StopFcn Specify M-file executed when stop
event occurs

TimerFcn Specify M-file callback function to
execute when timer event occurs

TimerPeriod Specify number of seconds between
timer events

TriggerFcn Specify M-file callback function to
execute when trigger event occurs

Triggering

InitialTriggerTime Record absolute time of first trigger
TriggerCondition Indicate required condition before

trigger event occurs
TriggerFrameDelay Specify number of frames to skip

before acquiring frames after trigger
occurs

TriggerRepeat Specify number of additional times
to execute trigger

TriggersExecuted Indicate total number of executed
triggers

TriggerSource Indicate hardware source to monitor
for trigger conditions

TriggerType Indicate type of trigger used by video
input object

13-4

Video Input Objects

Acquisition Source

SelectedSourceName Specify name of currently selected
video source

Source Indicate video source objects
associated with video input object

13-5

13 Property Reference

Video Source Objects
Video input objects create one or more video source objects that represent
the image acquisition data sources. The following table lists the properties
common to all video source objects.

Note A video source object can support additional, device-specific properties.
These properties vary, depending on the image acquisition hardware. To get
information about these properties, use the imaqhelp function, specifying the
video source object as an argument.

Parent Identify video input object that is
parent of video source object

Selected Indicate whether video source object
will be used for acquisition

Tag Specify descriptive text to associate
with image acquisition object

Type Identify type of image acquisition
object

13-6

14

Properties — Alphabetical
List

BayerSensorAlignment

Purpose Specify sensor alignment for Bayer demosaicing

Description If the ReturnedColorSpace property is set to 'bayer', then the Image
Acquisition Toolbox software will demosaic Bayer patterns returned by
the hardware. This color space setting will interpolate Bayer pattern
encoded images into standard RGB images. If your camera uses Bayer
filtering, the toolbox supports the Bayer pattern and can return color if
desired.

In order to perform the demosaicing, the toolbox needs to know the pixel
alignment of the sensor. This is the order of the red, green, and blue
sensors and is normally specified by describing the four pixels in the
upper-left corner of the sensor. It is the band sensitivity alignment of
the pixels as interpreted by the camera’s internal hardware. You must
get this information from the camera’s documentation and then specify
the value for the alignment, as described in the following table.

There are four possible sensor alignments.

Value Description

'gbrg' The 2-by-2 sensor alignment is

green blue
red green

'grbg' The 2-by-2 sensor alignment is

green red
blue green

'bggr' The 2-by-2 sensor alignment is

blue green
green red

'rggb' The 2-by-2 sensor alignment is

red green
green blue

14-2

BayerSensorAlignment

The value of this property is only used if the ReturnedColorSpace
property is set to 'bayer'.

Characteristics Access Read/write
Data type String
Values [{'grbg'} | 'gbrg' | 'rggb'| 'bggr']

See Also Functions

getdata, getsnapshot, peekdata, videoinput

Properties

ReturnedColorSpace, VideoFormat

14-3

DeviceID

Purpose Identify image acquisition device represented by video input object

Description The DeviceID property identifies the device represented by the video
input object.

A device ID is a number, assigned by an adaptor, that uniquely
identifies an image acquisition device. The adaptor assigns the first
device it detects the identifier 1, the second device it detects the
identifier 2, and so on.

You must specify the device ID as an argument to the videoinput
function when you create a video input object. The object stores
the value in the DeviceID property and also uses the value when
constructing the default value of the Name property.

To get a list of the IDs of the devices connected to your system, use
the imaqhwinfo function, specifying the name of a particular adaptor
as an argument.

Characteristics Access Read only
Data type double

Values Any nonnegative integer

Examples Use the imaqhwinfo function to determine which adaptors are
connected to devices on your system.

imaqhwinfo

ans =

InstalledAdaptors: {'matrox' 'winvideo'}
MATLABVersion: '7.4 (R2007a)'

ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

14-4

DeviceID

Use the imaqhwinfo function again, specifying the name of the adaptor,
to find out how many devices are available through that adaptor. The
imaqhwinfo function returns the device IDs for all the devices in the
DeviceIds field.

info = imaqhwinfo('winvideo')

info =

AdaptorDllName: [1x73 char]
AdaptorDllVersion: '2.0 (R2006a+)'

AdaptorName: 'winvideo'
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

See Also Functions

imaqhwinfo, videoinput

Properties

Name

14-5

DiskLogger

Purpose Specify MATLAB AVI file object used to log data

Description The DiskLogger property specifies the AVI file object used to log data
when the LoggingMode property is set to 'disk' or 'disk&memory'.

A MATLAB AVI file object specifies the name and other characteristics
of an AVI file. For example, you can use AVI file object properties to
specify the codec used for data compression and the desired quality of
the output. For complete information about the AVI file object and its
properties, see the avifile documentation.

Note Do not use the variable returned by the avifile function to
perform any operation on an AVI file object while it is being used by a
video input object for data logging. For example, do not change any
of the AVI file object properties, add frames, or close the object. Your
changes could conflict with the video input object.

When the video input object finishes logging data to disk, the AVI file
object remains open. The video input object does not open or close an
AVI file object used for logging. The video input object, however, does
update the Width, Height, and TotalFrames fields in the AVI file object
to reflect the current acquisition settings.

After Logging and Running are off, it is possible that the DiskLogger
might still be writing data to disk. When the DiskLogger finishes
writing data to disk, the value of the DiskLoggerFrameCount property
should equal the value of the FramesAcquired property. Do not close or
modify the DiskLogger until this condition is met.

Characteristics Access Read only while running
Data type AVI file object
Values The default value is [].

14-6

DiskLogger

Examples Create and configure an AVI file object.

file = avifile('logfile.avi');
file.Quality = 50;

Create and configure a video input object.

vid = videoinput('winvideo', 1);
vid.LoggingMode = 'disk&memory';
vid.DiskLogger = file;

Start logging data to disk.

start(vid)

To ensure that the logged data is written to the disk file, close the AVI
file. As an argument to the close function, specify the value of the
video input object DiskLogger property, vid.DiskLogger, to reference
the AVI file object, not the original variable, file, returned by the
avifile function.

file = close(vid.DiskLogger);

Delete the image acquisition object from memory when it is no longer
needed.

delete(vid)
clear vid

See Also Functions

videoinput

Properties

DiskLoggerFrameCount, Logging, LoggingMode

14-7

DiskLoggerFrameCount

Purpose Specify number of frames written to disk

Description The DiskLoggerFrameCount property indicates the current number of
frames written to disk by the DiskLogger. This value is only updated
when the LoggingMode property is set to 'disk' or 'disk&memory'.

After Logging and Running are off, it is possible that the DiskLogger
might still be writing data to disk. When the DiskLogger finishes
writing data to disk, the value of the DiskLoggerFrameCount property
should equal the value of the FramesAcquired property. Do not close or
modify the DiskLogger until this condition is met.

Characteristics Access Read only
Data type double

Values Any nonnegative integer

See Also Functions

videoinput

Properties

DiskLogger, FramesAcquired, Logging, Running

14-8

ErrorFcn

Purpose Specify M-file callback function to execute when run-time error occurs

Description The ErrorFcn property specifies the function to execute when an error
event occurs. A run-time error event is generated immediately after a
run-time error occurs.

Run-time errors include hardware errors and timeouts. Run-time
errors do not include configuration errors such as setting an invalid
property value.

Run-time error event information is stored in the EventLog property.
You can retrieve any error message with the Data.Message field of
EventLog.

Characteristics Access Read only while running
Data type String, function handle, or cell array
Values imaqcallback is the default callback function.

See Also Properties

EventLog, Timeout

14-9

EventLog

Purpose Store information about events

Description The EventLog property is an array of structures that stores information
about events. Each structure in the array represents one event. Events
are recorded in the order in which they occur. The first EventLog
structure reflects the first event recorded, the second EventLog
structure reflects the second event recorded, and so on.

Each event log structure contains two fields: Type and Data.

The Type field stores a character array that identifies the event type.
The Image Acquisition Toolbox software defines many different event
types, listed in this table. Note that not all event types are logged.

Event Type Description
Included in
Log

Error Run-time error occurred. Run-time
errors include timeouts and
hardware errors.

Yes

Frames Acquired The number of frames specified
in the FramesAcquiredFcnCount
property has been acquired.

No

Start Object was started by calling the
start function.

Yes

Stop Object stopped executing. Yes
Timer Timer expired. No
Trigger Trigger executed. Yes

The Data field stores information associated with the specific event. For
example, all events return the absolute time the event occurred in the
AbsTime field. Other event-specific fields are included in Data. For more
information, see “Retrieving Event Information” on page 7-7.

14-10

EventLog

Characteristics Access Read only
Data type Structure array
Values Default is empty structure array.

Examples Create a video input object.

vid = videoinput('winvideo');

Start the object.

start(vid)

View the event log to see which events occurred.

elog = vid.EventLog;

{elog.Type}

ans =
'Start' 'Trigger' 'Stop'

View the data associated with a trigger event.

elog(2).Data
ans =

AbsTime: [2003 2 11 17 22 18.9740]
FrameMemoryLimit: 12288000
FrameMemoryUsed: 0

FrameNumber: 0
RelativeFrame: 0
TriggerIndex: 1

See Also Properties

Logging

14-11

FrameGrabInterval

Purpose Specify how often to acquire frame from video stream

Description The FrameGrabInterval property specifies how often the video input
object acquires a frame from the video stream. By default, objects
acquire every frame in the video stream, but you can use this property
to specify other acquisition intervals.

Note Do not confuse the frame grab interval with the frame rate. The
frame rate describes the rate at which an image acquisition device
provides frames, typically measured in seconds, such as 30 frames per
second. The frame grab interval is measured in frames, not seconds. If
a particular device’s frame rate is configurable, the video source object
might include the frame rate as a device-specific property.

For example, when you specify a FrameGrabInterval value of 3, the
object acquires every third frame from the video stream, as illustrated
in this figure. The object acquires the first frame in the video stream
before applying the FrameGrabInterval.

You specify the source of the video stream in the SelectedSourceName
property.

14-12

FrameGrabInterval

Characteristics Access Read only while running
Data type double

Values Any positive integer. The default value is 1 (acquire
every frame).

See Also Functions

videoinput

Properties

SelectedSourceName

14-13

FramesAcquired

Purpose Indicate total number of frames acquired

Description The FramesAcquired property indicates the total number of frames
that the object has acquired, regardless of how many frames have been
extracted from the memory buffer. The video input object continuously
updates the value of the FramesAcquired property as it acquires frames.

Note When you issue a start command, the video input object resets
the value of the FramesAcquired property to 0 (zero) and flushes the
buffer.

To find out how many frames are available in the memory buffer, use
the FramesAvailable property.

Characteristics Access Read only
Data type double

Values Any nonnegative integer. The default value is 0
(zero).

See Also Functions

start

Properties

FramesAvailable, FramesAcquiredFcn, FramesAcquiredFcnCount

14-14

FramesAcquiredFcn

Purpose Specify M-file executed when specified number of frames have been
acquired

Description The FramesAcquiredFcn specifies the M-file function to execute every
time a predefined number of frames have been acquired.

A frames acquired event is generated immediately after the number of
frames specified by the FramesAcquiredFcnCount property is acquired
from the selected video source. This event executes the M-file specified
for FramesAcquiredFcn.

Use the FramesAcquiredFcn callback if you must access each frame
that is acquired. If you do not have this requirement, you might want to
use the TimerFcn property.

Frames acquired event information is not stored in the EventLog
property.

Characteristics Access Read/write
Data type String, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also Properties

EventLog, FramesAcquiredFcnCount, TimerFcn

14-15

FramesAcquiredFcnCount

Purpose Specify number of frames that must be acquired before frames acquired
event is generated

Description The FramesAcquiredFcnCount property specifies the number of frames
to acquire from the selected video source before a frames acquired
event is generated.

The object generates a frames acquired event immediately after the
number of frames specified by FramesAcquiredFcnCount is acquired
from the selected video source.

Characteristics Access Read only while running
Data type double

Values Any positive integer. The default value is 0 (zero).

See Also Properties

FramesAcquiredFcn

14-16

FramesAvailable

Purpose Indicate number of frames available in memory buffer

Description The FramesAvailable property indicates the total number of frames
that are available in the memory buffer. When you extract data, the
object reduces the value of the FramesAvailable property by the
appropriate number of frames. You use the getdata function to extract
data and move it into the MATLAB workspace.

Note When you issue a start command, the video input object resets
the value of the FramesAvailable property to 0 (zero) and flushes the
buffer.

To view the total number of frames that have been acquired since the
last start command, use the FramesAcquired property.

Characteristics Access Read only
Data type double

Values Any nonnegative integer. The default value is 0 (zero).

See Also Functions

getdata, start

Properties

FramesAcquired

14-17

FramesPerTrigger

Purpose Specify number of frames to acquire per trigger using selected video
source

Description The FramesPerTrigger property specifies the number of frames the
video input object acquires each time it executes a trigger using the
selected video source.

When the value of the FramesPerTrigger property is set to Inf, the
object keeps acquiring frames until an error occurs or you issue a stop
command.

Note When the FramesPerTrigger property is set to Inf, the object
ignores the value of the TriggerRepeat property.

Characteristics Access Read only while running
Data type double

Values Any positive integer. The default value is 10.

See Also Functions

stop

Properties

TriggerRepeat

14-18

InitialTriggerTime

Purpose Record absolute time of first trigger

Description The InitialTriggerTime property records the absolute time of the first
trigger. The absolute time is recorded as a MATLAB clock vector.

For all trigger types, InitialTriggerTime records the time when the
Logging property is set to 'on'.

To find the time when a subsequent trigger executed, view the
Data.AbsTime field of the EventLog property for the particular trigger.

Characteristics Access Read only
Data type Six-element vector of doubles (MATLAB clock vector)
Values The default value is [].

Examples Create an image acquisition object, vid, for a USB-based webcam.

vid = videoinput('winvideo',1);

Start the object. Because the TriggerType property is set to
'immediate' by default, the trigger executes immediately. The object
records the time of the initial trigger.

start(vid)

abstime = vid.InitialTriggerTime

abstime =

1.0e+003 *

1.9990 0.0020 0.0190 0.0130 0.0260 0.0208

Convert the clock vector into an integer form for display.

t = fix(abstime);

14-19

InitialTriggerTime

sprintf('%d:%d:%d', t(4),t(5),t(6))

ans =

13:26:20

See Also Functions

clock, getdata

Properties

EventLog, Logging, TriggerType

14-20

Logging

Purpose Indicate whether object is currently logging data

Description The Logging property indicates whether the video input object is
currently logging data.

When a trigger occurs, the object sets the Logging property to 'on' and
logs data to memory, a disk file, or both, depending on the value of
the LoggingMode property.

The object sets the Logging property to 'off' when it acquires the
requested number of frames, an error occurs, or you issue a stop
command.

To acquire data when the object is running but not logging, use the
peekdata function. Note, however, that the peekdata function does not
guarantee that all the requested image data is returned. To acquire all
the data without gaps, you must have the object log the data to memory
or to a disk file.

Characteristics Default value is enclosed in braces ({}).

Access Read only
Data type String
Values [{'off'} | 'on']

See Also Functions

getdata, islogging, peekdata, stop, trigger

Properties

LoggingMode, Running

14-21

LoggingMode

Purpose Specify destination for acquired data

Description The LoggingMode property specifies where you want the video input
object to store the acquired data. You can specify any of the following
values:

Value Description

'disk' Log acquired data to a disk file.
'disk&memory' Log acquired data to both a disk file and to a

memory buffer.
'memory' Log acquired data to a memory buffer.

If you select 'disk' or 'disk&memory', you must specify the AVI
file object used to access the disk file as the value of the DiskLogger
property.

Note When logging data to memory, you must extract the acquired
data in a timely manner with the getdata function to avoid using up all
the memory that is available on your system. Use imaqmem to specify
the amount of memory available for image frames.

Characteristics Access Read only while running
Data type String
Values ['disk' | 'disk&memory' | {'memory'}]

Default value is enclosed in braces ({}).

See Also Functions

getdata

14-22

LoggingMode

Properties

DiskLogger, Logging

14-23

Name

Purpose Specify name of image acquisition object

Description The Name property specifies a descriptive name for the image acquisition
object.

Characteristics Access Read/write
Data type String
Values Any text string. The toolbox creates the default name by

combining the values of the VideoFormat and DeviceID
properties with the adaptor name in this format:

VideoFormat + '-' + adaptor name + '-' + DeviceID

Examples Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the Name property using the get function.

get(vid,'Name')

ans =

RGB555_128x96-winvideo-1

See Also Functions

videoinput

Properties

DeviceID, VideoFormat

14-24

NumberOfBands

Purpose Indicate number of color bands in data to be acquired

Description The NumberOfBands property indicates the number of color bands in the
data to be acquired. The toolbox defines band as the third dimension in
a 3-D array, as shown in this figure.

The value of the NumberOfBands property indicates the number of color
bands in the data returned by getsnapshot, getdata, and peekdata.

Characteristics Access Read only
Data type double

Values Any positive integer. The default value is defined at
object creation time based on the video format.

Examples Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the NumberOfBands property using the get
function.

get(vid,'NumberOfBands')

ans =

3

14-25

NumberOfBands

If you retrieve the value of the VideoFormat property, you can see that
the video data is in RGB format.

get(vid,'VideoFormat')

ans =

RGB24_320x240

See Also Functions

getdata, getsnapshot, peekdata

14-26

Parent

Purpose Identify video input object that is parent of video source object

Description The Parent property identifies the video input object that is the parent
of a video source object.

The parent of a video source object is defined as the video input object
owning the video source object.

Characteristics Access Read only
Data type Video input object
Values Defined at object creation time

See Also Functions

videoinput

14-27

Previewing

Purpose Indicate whether object is currently previewing data in separate window

Description The Previewing property indicates whether the object is currently
previewing data in a separate window.

The object sets the Previewing property to 'on' when you call the
preview function.

The object sets the Previewing property to 'off' when you close the
preview window using the closepreview function or by clicking the
Close button in the preview window title bar.

Characteristics Default value is enclosed in braces ({}).

Access Read only
Data type String
Values [{'off'} | 'on']

See Also Functions

closepreview, preview

14-28

ReturnedColorSpace

Purpose Specify color space used in MATLAB

Description The ReturnedColorSpace property specifies the color space you
want the toolbox to use when it returns image data to the MATLAB
workspace. This is only relevant when you are accessing acquired image
data with the getsnapshot, getdata, and peekdata functions.

This property can have any of the following values:

Value Description

'grayscale' MATLAB grayscale color space.
'rgb' MATLAB RGB color space.
'YCbCr' MATLAB YCbCr color space. This is often referred

to as YUV.
'bayer' Convert grayscale Bayer color patterns to RGB images.

The bayer color space option is only available if your
camera’s default returned color space is grayscale.

To use the BayerSensorAlignment property, you must
set the ReturnedColorSpace property to bayer.

Characteristics Access Read/write
Data type String
Values Defined at object creation time and depends on the

video format selected

See Also Functions

getdata, getsnapshot, peekdata, videoinput

Properties

BayerSensorAlignment, VideoFormat

14-29

ROIPosition

Purpose Specify region-of-interest (ROI) window

Description The ROIPosition property specifies the region-of-interest acquisition
window. The ROI window defines the actual size of the frame logged
by the toolbox, measured with respect to the top left corner of an image
frame.

ROIPosition is specified as a 1-by-4 element vector

[XOffset YOffset Width Height]

where

XOffset Position of the upper left corner of the ROI, measured
in pixels.

YOffset Position of the upper left corner of the ROI, measured
in rows.

Width Width of the ROI, measured in pixels. The sum of
XOffset and Width cannot exceed the width specified
in VideoResolution.

Height Height of the ROI, measured in rows. The sum of
YOffset and Height cannot exceed the height specified
in VideoResolution.

14-30

ROIPosition

Note The Width does not include both end points as well as the width
between the pixels. It includes one end point, plus the width between
pixels. For example, if you want to capture an ROI of pixels 20 through
30, including both end pixels 20 and 30, set an XOffset of 20 and a
Width of 10. The same rule applies to height.

In the figure shown above, the width of the captured ROI contains
pixels 50 through 170, including both end points, because the XOffset
is set to 50 and the Width is set to 120.

Characteristics Access Read only while running
Data type 1-by-4 element vector of doubles
Values Default is [0 0 width height] where width and

height are determined by VideoResolution.

See Also Properties

VideoResolution

14-31

Running

Purpose Indicate whether video input object is ready to acquire data

Description The Running property indicates if the video input object is ready to
acquire data.

Along with the Logging property, Running reflects the state of a video
input object. The Running property indicates that the object is ready
to acquire data, while the Logging property indicates that the object is
acquiring data.

The object sets the Running property to 'on' when you issue the start
command. When Running is 'on', you can acquire data from a video
source.

The object sets the Running property to 'off' when any of the following
conditions is met:

• The specified number of frames has been acquired.

• A run-time error occurs.

• You issue the stop command.

When Running is 'off', you cannot acquire image data. However, you
can acquire one image frame with the getsnapshot function.

Characteristics Default value is enclosed in braces ({}).

Access Read only
Data type String
Values [{'off'} | 'on']

See Also Properties

getsnapshot, start, stop

Properties

Logging

14-32

Selected

Purpose Indicate whether video source object will be used for acquisition

Description The Selected property indicates if the video source object will be used
for acquisition. You select a video source object by specifying its name
as the value of the video input object’s SelectedSourceName property.
The video input object Source property is an array of all the video
source objects associated with the video input object.

If Selected is 'on', the video source object is selected. If the value is
'off', the video source object is not selected.

A video source is defined to be a collection of one or more physical data
sources that are treated as a single entity. For example, hardware
supporting multiple RGB sources, each of which is made up of three
physical connections (red, green, and blue), is treated as a single video
source object.

Characteristics Default value is enclosed in braces ({}).

Access Read only
Data type String
Values [{'off'} | 'on']

Examples Create an image acquisition object.

vid = videoinput('winvideo');

Determine the currently selected video source object.

vid.SelectedSourceName

ans =

input1

Retrieve the currently selected video source object.

14-33

Selected

src = getselectedsource(vid);

View its Name and Selected properties.

src.SourceName

ans =

input1

src.Selected

ans =

on

See Also Functions

getselectedsource

Properties

SelectedSourceName

14-34

SelectedSourceName

Purpose Specify name of currently selected video source

Description The SelectedSourceName property specifies the name of the video
source object from which the video input object acquires data. The name
is specified as a string. By default, the video input object selects the
first available video source object stored in the Source property.

The toolbox defines a video source as one or more hardware inputs
that are treated as a single entity. For example, hardware supporting
multiple RGB sources, each of which is made up of three physical
connections (red-green-blue), is treated as a single video source object.

Characteristics Access Read only while running
Data type String

Values The video input object assigns a name to each video
source object it creates. Names are defined at object
creation time and are vendor specific.
By default, the toolbox uses the first available source
name.

Examples To see a list of all available sources, create a video input object.

vid = videoinput('matrox');

Use the set function to view a list of all available video source objects.

src_names = set(vid,'SelectedSourceName');

See Also Functions

set

Properties

Source

14-35

Source

Purpose Indicate video source objects associated with video input object

Description The Source property is a vector of video source objects that represent
the physical data sources connected to a device. When a video input
object is created, the toolbox creates a vector of video source objects
associated with the video input object.

Each video source object created is provided a unique source name. You
can use the source name to select the desired acquisition source by
configuring the SelectedSourceName property of the video input object.

A video source object’s name is stored in its SourceName property. If a
video source object’s SourceName is equivalent to the video input object’s
SelectedSourceName, the video source object’s Selected property has
a value of 'on'.

The video source object supports a set of common properties, such as
SourceName. Each video source object can also support device-specific
properties that control characteristics of the physical device such as
brightness, hue, and saturation. Different image acquisition devices
expose different sets of properties.

A video source is defined to be a collection of one or more physical data
sources that are treated as a single entity. For example, hardware
supporting multiple RGB sources, each of which is made up of three
physical connections (red-green-blue), is treated as a single video source
object.

The Source property encapsulates one or more video sources. To
reference a video source, you use a numerical integer to index into the
vector of video source objects.

Characteristics Access Read only
Data type Vector of video source objects
Values Defined at object creation time

14-36

Source

Examples Create an image acquisition object.

vid = videoinput('matrox');

To access all the video source objects associated with a video input
object, use the Source property of the video input object. (To view only
the currently selected video source object, use the getselectedsource
function.)

sources = vid.Source;
src = sources(1);

To view the properties of the video source object src, use the get
function.

get(src)
General Settings:

Parent = [1x1 videoinput]
Selected = on
SourceName = CH1
Tag =
Type = videosource

Device Specific Properties:
InputFilter = lowpass
UserOutputBit3 = off
UserOutputBit4 = off
XScaleFactor = 1
YScaleFactor = 1

See Also Functions

videoinput, getselectedsource

Properties

SelectedSourceName

14-37

SourceName

Purpose Indicate name of video source object

Description The SourceName property indicates the name of a video source object.

SourceName is one of the values in the video input object’s
SelectedSourceName property.

Characteristics Access Read only
Data type String
Values Defined at object creation time

See Also Functions

getselectedsource

Properties

SelectedSourceName, Source

14-38

StartFcn

Purpose Specify M-file executed when start event occurs

Description The StartFcn property specifies the M-file function to execute when a
start event occurs. A start event occurs immediately after you issue
the start command.

The StartFcn callback executes synchronously. The toolbox does not
set the object’s Running property to 'on' until the callback function
finishes executing. If the callback function encounters an error, the
object never starts running.

Start event information is stored in the EventLog property.

Characteristics Access Read/write
Data type String, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also Properties

EventLog, Running

14-39

StopFcn

Purpose Specify M-file executed when stop event occurs

Description The StopFcn property specifies the M-file function to execute when a
stop event occurs. A stop event occurs immediately after you issue the
stop command.

The StopFcn callback executes synchronously. Under most
circumstances, the image acquisition object will be stopped and the
Running property will be set to 'off' by the time the M-file completes
execution.

Stop event information is stored in the EventLog property.

Characteristics Access Read/write
Data type String, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also Properties

EventLog, Running

14-40

Tag

Purpose Specify descriptive text to associate with image acquisition object

Description The Tag property specifies any descriptive text that you want to
associate with an image acquisition object.

The Tag property can be useful when you are constructing programs that
would otherwise need to define the image acquisition object as a global
variable, or pass the object as an argument between callback routines.

You can use the value of the Tag property to search for particular image
acquisition objects when using the imaqfind function.

Characteristics Access Read/Write
Data type String
Values Any text string

See Also Functions

imaqfind

14-41

Timeout

Purpose Specify how long to wait for image data

Description The Timeout property specifies the amount of time (in seconds) that the
getdata and getsnapshot functions wait for data to be returned. The
Timeout property is only associated with these blocking functions. If
the specified time period expires, the functions return control to the
MATLAB command line.

A timeout is one of the conditions for stopping an acquisition. When a
timeout occurs, and the object is running, the M-file function specified
by ErrorFcn is called.

Note The Timeout property is not associated with hardware timeout
conditions.

Characteristics Access Read only while running
Data type double

Values Any positive integer. The default value is 10 seconds.

See Also Functions

getdata, getsnapshot

Properties

EventLog, ErrorFcn

14-42

TimerFcn

Purpose Specify M-file callback function to execute when timer event occurs

Description The TimerFcn property specifies the M-file callback function to execute
when a timer event occurs. A timer event occurs when the time period
specified by the TimerPeriod property expires.

The toolbox measures time relative to when the object is started with
the start function. Timer events stop being generated when the image
acquisition object stops running.

Note Some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value you specify is too small.

Characteristics Access Read/write
Data type String, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also Functions

start, stop

Properties

TimerPeriod

14-43

TimerPeriod

Purpose Specify number of seconds between timer events

Description The TimerPeriod property specifies the amount of time, in seconds,
that must pass before a timer event is triggered.

The toolbox measures time relative to when the object is started with
the start function. Timer events stop being generated when the image
acquisition object stops running.

Note Some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value you specify is too small.

Characteristics Access Read only while running
Data type double

Values Any positive value. The minimum value is 0.01
seconds. The default value is 1 (second).

See Also Functions

start, stop

Properties

EventLog, TimerFcn

14-44

TriggerCondition

Purpose Indicate required condition before trigger event occurs

Description The TriggerCondition property indicates the condition that must be
met, via the TriggerSource, before a trigger event occurs. The trigger
conditions that you can specify depend on the value of the TriggerType
property.

TriggerType Value Conditions Available

'hardware'
(if available for your
device)

Device-specific.
For example, some Matrox hardware supports
conditions such as 'risingEdge' and
'fallingEdge'. Use the triggerinfo function
to view a list of valid values to use with your
image acquisition hardware.

'immediate' 'none'

'manual' 'none'

You must use the triggerconfig function to set the value of this
property.

Characteristics Access Read only. Use the triggerconfig function to set
the value of this property.

Data type String
Values Device specific. Use the triggerinfo function to

view a list of valid values to use with your image
acquisition hardware.

See Also Functions

trigger, triggerconfig, triggerinfo

14-45

TriggerCondition

Properties

TriggerSource, TriggerType

14-46

TriggerFcn

Purpose Specify M-file callback function to execute when trigger event occurs

Description The TriggerFcn property specifies the M-file callback function to
execute when a trigger event occurs. The toolbox generates a trigger
event when a trigger is executed based on the configured TriggerType,
and data logging is initiated.

Under most circumstances, the M-file callback function is not
guaranteed to complete execution until sometime after the toolbox sets
the Logging property to 'on'.

Trigger event information is stored in the EventLog property.

Characteristics Access Read/write
Data type String, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also Functions

trigger

Properties

EventLog, Logging

14-47

TriggerFrameDelay

Purpose Specify number of frames to skip before acquiring frames after trigger
occurs

Description The TriggerFrameDelay property specifies the number of frames to
skip before acquiring frames after a trigger occurs. The object waits
the specified number of frames after the trigger before starting to log
frames.

In this figure, the TriggerFrameDelay is set to 5, so the object lets five
frames pass before starting to acquire frames. The number of frames
captured is defined by the FramesPerTrigger property.

Characteristics Access Read only while running
Data type double

Values Any integer. The default value is 0 (zero).

See Also Functions

trigger

14-48

TriggerFrameDelay

Properties

FramesPerTrigger

14-49

TriggerRepeat

Purpose Specify number of additional times to execute trigger

Description The TriggerRepeat property specifies the number of additional times
you want the object to execute a trigger. This table describes the
behavior for several typical TriggerRepeat values.

Value Behavior

0 (default) Execute the trigger once when the trigger condition
is met.

Any positive
integer

Execute the trigger the specified number of
additional times when the trigger condition is met.

Inf Keep executing the trigger every time the trigger
condition is met until the stop function is called
or an error occurs.

To determine how many triggers have executed, check the value of the
TriggersExecuted property.

Note If the FramesPerTrigger property is set to Inf, the object ignores
the value of the TriggerRepeat property.

Characteristics Access Read only while running
Data type double

Values Any nonnegative integer. The default value is 0 (zero).

See Also Functions

stop, trigger

Properties

FramesPerTrigger, TriggersExecuted, TriggerType

14-50

TriggersExecuted

Purpose Indicate total number of executed triggers

Description The TriggersExecuted property indicates the total number of triggers
that the video input object has executed.

Characteristics Access Read only
Data type double

Values Any nonnegative integer. The default value is 0 (zero).

See Also Functions

trigger

Properties

EventLog

14-51

TriggerSource

Purpose Indicate hardware source to monitor for trigger conditions

Description The TriggerSource property indicates the hardware source the image
acquisition object monitors for trigger conditions. When the condition
specified in the TriggerCondition property is met, the object executes
the trigger and starts acquiring data.

You use the triggerconfig function to specify this value. The value of
the TriggerSource property is device specific. You specify whatever
mechanism a particular device uses to generate triggers.

For example, for Matrox hardware, the TriggerSource property could
have values such as 'Port0' or 'Port1'. Use the triggerinfo function
to view a list of values that are valid for your image acquisition device.

You must use the triggerconfig function to set the value of this
property.

Note The TriggerSource property is only used when the TriggerType
property is set to 'hardware'.

Characteristics Access Read only. Use the triggerconfig function to set the
value of this property.

Data type String
Values Device-specific. Use the triggerinfo function to get a

list of valid values.

See Also Functions

trigger, triggerconfig, triggerinfo

Properties

TriggerCondition, TriggerType

14-52

TriggerType

Purpose Indicate type of trigger used by video input object

Description The TriggerType property indicates the type of trigger used by the
video input object. Triggers initiate data acquisition.

You use the triggerconfig function to specify one of the following
values for this property.

Trigger Type Description

'hardware'
(if available for
your device)

Trigger executes when a specified condition
is met. You specify the condition using the
TriggerCondition property and you specify the
hardware source to monitor for the condition
in the TriggerSource property. You use the
triggerconfig function to set the values of
these properties.

'immediate' Trigger executes immediately after you call the
start function.

'manual' Trigger executes immediately after you call the
trigger function.

Characteristics Default value is enclosed in braces ({}).

Access Read only. Use the triggerconfig function to
set the value of this property.

Data type String
Values ['hardware' | {'immediate'} | 'manual']

The 'hardware' option is only included for
devices that support hardware triggers.

See Also Functions

trigger, triggerconfig, triggerinfo

14-53

TriggerType

Properties

TriggerCondition, TriggerSource

14-54

Type

Purpose Identify type of image acquisition object

Description The Type property identifies the type of image acquisition object. An
image acquisition object can be either one of two types:

• Video input object

• Video source object

Characteristics Access Read only
Data type String
Values ['videoinput' | 'videosource'] Defined at

object creation time

Examples vid = videoinput('winvideo',1)

get(vid,'Type')

ans =

videoinput

This example gets the type of a video source object.

src = getselectedsource(vid);
get(src,'type')
ans =
videosource

See Also Functions

getselectedsource, videoinput

14-55

UserData

Purpose Store data to associate with image acquisition object

Description The UserData property specifies any data that you want to associate
with an image acquisition object.

Note The object does not use the data in UserData directly. However,
you can access the data by using the get function or by referencing the
property as you would a field in a MATLAB structure.

Characteristics Access Read/Write
Data type Any
Values User-defined

See Also Functions

get

14-56

VideoFormat

Purpose Specify video format or name of device configuration file

Description The VideoFormat property specifies the video format used by the
image acquisition device or the name of a device configuration file,
depending on which you specified when you created the object using
the videoinput function.

Image acquisition devices typically support multiple video formats.
When you create a video input object, you can specify the video format
that you want the device to use. If you do not specify the video format
as an argument, the videoinput function uses the default format. Use
the imaqhwinfo function to determine which video formats a particular
device supports and find out which format is the default.

As an alternative, you can specify the name of a device configuration
file, also known as a camera file or digitizer configuration format (DCF)
file. Some image acquisition devices use these files to store device
configuration information. The videoinput function can use this file to
determine the video format and other configuration information.

Use the imaqhwinfo function to determine if your device supports
device configuration files.

Characteristics Access Read only
Data type String
Values Device-specific. The example describes how to get a

list of all the formats supported by a particular image
acquisition device.

Examples To determine the video formats supported by a device, check the
SupportedFormats field in the device information structure returned
by imaqhwinfo.

info = imaqhwinfo('winvideo')

info =

14-57

VideoFormat

AdaptorDllName: [1x73 char]
AdaptorDllVersion: '2.1 (R2007a)'

AdaptorName: 'winvideo'
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

info.DeviceInfo

ans =

DefaultFormat: 'RGB555_128x96'
DeviceFileSupported: 0

DeviceName: 'IBM PC Camera'
DeviceID: 1

ObjectConstructor: 'videoinput('winvideo', 1)'
SupportedFormats: {1x34 cell}

See Also Functions

imaqhwinfo, videoinput

14-58

VideoResolution

Purpose Indicate width and height of incoming video stream

Description The VideoResolution property is a two-element vector indicating
the width and height of the frames in the incoming video stream.
VideoResolution is specified as

[Width Height]

Width is measured in pixels and height is measured in rows.

Note You specify the video resolution when you create the video input
object, by passing in the video format argument to the videoinput
function. If you do not specify a video format, the videoinput function
uses the default video format. Use the imaqhwinfo function to
determine which video formats a particular device supports and find
out which format is the default.

Characteristics Access Read only
Data type Vector of doubles
Values Defined by video format

See Also Functions

imaqhwinfo, videoinput

Properties

ROIPosition, VideoFormat

14-59

VideoResolution

14-60

A

Examples

Use this list to find examples in the documentation.

A Examples

Fundamentals
“Basic Image Acquisition Procedure” on page 1-6
“Determining the Device Adaptor Name” on page 4-2
“Determining the Device ID” on page 4-3
“Getting More Information About a Particular Device” on page 4-4
“Determining Supported Video Formats” on page 4-5
“Creating a Video Input Object” on page 4-9
“Specifying the Video Format” on page 4-11
“Using Device Configuration Files (Camera Files)” on page 4-13
“Specifying the Selected Video Source Object” on page 4-14
“Viewing the Values of Object Properties” on page 4-17
“Viewing the Properties of a Video Source Object” on page 4-18
“Viewing the Value of a Particular Property” on page 4-19
“Getting Information About Object Properties” on page 4-20
“Setting the Value of an Object Property” on page 4-20
“Starting and Stopping a Video Input Object” on page 4-23
“Deleting Image Acquisition Objects” on page 4-27

Previewing
“Opening a Video Preview Window” on page 2-10
“Stopping the Preview Video Stream” on page 2-11
“Closing a Video Preview Window” on page 2-12
“Previewing Data in Custom GUIs” on page 2-12
“Performing Custom Processing of Previewed Data” on page 2-14

Image Acquisition Tool (GUI)
“Acquiring Data” on page 3-28

A-2

Acquiring Image Data

Acquiring Image Data
“Specifying Trigger Type, Source, and Condition” on page 5-5
“Example: Using an Immediate Trigger” on page 5-10
“Example: Using a Manual Trigger” on page 5-12
“Example: Using a Hardware Trigger” on page 5-15
“Example: Acquiring 100 Frames” on page 5-22
“Determining How Many Frames Are Available” on page 5-24
“Waiting for an Acquisition to Finish” on page 5-30
“Freeing Memory” on page 5-36
“Example: Logging Data to Disk” on page 5-42

Working with Acquired Data
“Example: Acquiring 10 Seconds of Image Data” on page 6-5
“Viewing Frames in the Memory Buffer” on page 6-6
“Bringing a Single Frame into the Workspace” on page 6-10
“Determining the Dimensions of Image Data” on page 6-13
“Determining the Data Type of Image Frames” on page 6-16
“Specifying the Color Space” on page 6-17
“Example: Determining the Frame Delay Duration” on page 6-22

Events and Callbacks
“Example: Using the Default Callback Function” on page 7-2
“Example: Accessing Data in the Event Log” on page 7-9
“Example: Writing a Callback Function” on page 7-13
“Example: Viewing a Sample Frame” on page 7-16
“Example: Monitoring Memory Usage” on page 7-17

A-3

A Examples

A-4

Index

IndexA
acquiring data 3-28
acquiring images

basic procedure 1-6
connecting to devices 4-1
overview 5-2
specifying a delay 5-27
specifying the amount 5-20
specifying the frame grab interval 5-21
specifying the timeout value 14-42
troubleshooting hardware 10-2
waiting for completion 5-30

Acquisition Parameters
Device Properties 3-10
Disk Logging 3-14
Frames Per Trigger 3-9
hardware triggering 3-17
Logging 3-13
Memory Logging 3-14
Number of Triggers 3-16
Region of Interest (ROI) 3-18
Trigger Type 3-16
Triggering 3-15

Acquisition Parameters tabs 3-8
adaptor kit

adding support of additional hardware 9-1
adaptor names

finding 4-15
adaptors

definition 4-2
adding hardware 3-6
application-defined data

using to specify update preview window
function 2-16

Audio Video Interleave (AVI) format
creating an AVI file object 5-40
logging images to disk 5-39
writing to file from model 8-8

AVI file 3-14

B
Bayer demosaicing 14-2
BayerSensorAlignment property 14-2
block library

using 8-1
blurry frames 3-31

C
callback functions

as text string 7-15
creating 7-12
enabling and disabling 7-16
specifying 7-14
specifying as cell array 7-15
specifying as function handle 7-15

callback properties
list of 7-4

camcorders
support for 2-4

camera file 3-7
camera files 4-13
Carnegie Mellon University DCAM driver

installing 10-9
clear function 12-2
closepreview function 12-3

using 2-12
color spaces

of acquired image data 6-17
Coreco IFC devices

determining driver version 10-4
troubleshooting 10-3

Coreco Sapera devices
determining driver version 10-6
troubleshooting 10-5

Index-1

Index

D
DALSA Coreco IFC devices

determining driver version 10-4
troubleshooting 10-3

DALSA Coreco Sapera devices
determining driver version 10-6
troubleshooting 10-5

dark frames 3-31
Data Translation devices

troubleshooting 10-7
data type used by device

finding 4-15
DCAM

support for 2-4
troubleshooting 10-8

DCAM driver
installing and configuring 10-9

debugging your hardware 10-26
imaqsupport 10-26

delete function 12-4
deleting

image acquisition objects 4-27
desktop user interface 3-2
device configuration files 4-13
device drivers

determining version 10-4 10-6 10-17 10-19
10-21

finding name and version 4-15
device IDs

finding 4-2
of image acquisition devices 4-3

device information structure
returned by imaqhwinfo 4-4

device name
finding 4-15

Device Properties 3-10
DeviceID property 14-4
DeviceInfo field 4-4
devices

adding support for 9-1

Digital Camera (DCAM) specification
support for 2-4

digital video
support for 2-4

digitizer configuration format (DCF) files 4-13
DirectX drivers

finding version 10-23
disk files

logging image data to 5-39
Disk Logging 3-14
DiskLogger property 14-6

using 5-39
DiskLoggerFrameCount property 14-8
disp function 12-5
displaying images

after acquiring 6-19

E
error events

definition 7-4
information returned 7-8

ErrorFcn 7-12
ErrorFcn property 14-9
event structures 7-7
EventLog property 14-10

retrieving information from 7-9
events

retrieving event information 7-7
types of 7-4

Export Data button 3-32
exporting acquired data 3-32
exporting hardware configurations 3-36
external triggers

configured in camera files 4-13
example 5-15

extracting image data 6-3

Index-2

Index

F
FireWire

image acquisition devices 2-2
Firewire (IEEE 1394) Digital Camera (DCAM)

specification
support for 2-4

flushdata function 12-7
using 5-36

frame delay
specifying 14-48

frame grabbers 2-2
troubleshooting 10-2
troubleshooting DALSA Coreco IFC

devices 10-3
troubleshooting DALSA Coreco Sapera

devices 10-5
troubleshooting Data Translation

devices 10-7
frame memory limit

setting 5-34
frame rates

in example 6-5
relation to processing speed 2-7

FrameGrabInterval property 14-12
using 5-21

frames
determining dimensions of 6-13
determining how many have been

acquired 5-22
memory usage 5-34
specifying the number to acquire 5-20

frames acquired events
definition 7-4
example 7-17
information returned 7-8

Frames Per Trigger 3-9
FramesAcquired property 14-14
FramesAcquiredFcn 7-12

FramesAcquiredFcn property 14-15
FramesAcquiredFcnCount property 14-16
FramesAvailable property 14-17

using 5-24
FramesPerTrigger property 14-18

using 5-22
freeing memory

used for image frames 5-36
From Video Device block

using 8-1

G
get function 12-8

using 4-17
getdata function 12-9

specifying the timeout value 14-42
using 6-4

getselectedsource function 12-13
getsnapshot function 12-14

H
Hamamatsu devices

troubleshooting 10-15
hardware triggering 3-17
hardware triggers

configured in camera files 4-13
defined 5-8
example 5-15

I
IAT file 3-34
IEEE 1394

troubleshooting DCAM driver 10-8
IEEE-1394

image acquisition devices 2-2

Index-3

Index

image acquisition
basic procedure 1-6
determining time of 6-21
getting hardware information 4-2
overview 5-2
previewing the image 2-9
retrieving timing information 6-20
setting up 2-6
specifying a delay 14-48
specifying the timeout value 14-42
time-based acquisition 6-5
using timers with 14-43

image acquisition devices 2-2
adaptors 4-2
adding support for 9-1
connecting to 4-1
finding the device ID 4-2
list of supported devices 2-4
setting up 2-6
troubleshooting 10-2 10-22
troubleshooting Hamamatsu devices 10-15

image acquisition objects
associating data with 14-56
avoiding global variables 14-41
configuring properties 4-16
creating 4-8
deleting 4-27
determining the device ID 14-4
determining type of 14-55
finding all existing objects 4-27
starting 4-23
state 4-23
stopping 4-23
types of 4-8
viewing all settable properties 4-20
viewing properties 4-17

Image Acquisition Tool 3-1
acquiring data 3-28
Acquisition Parameters tabs 3-8
adding new hardware 3-6
Device Properties 3-10
Disk Logging 3-14
exporting acquired data 3-32
exporting hardware configurations 3-36
Frames Per Trigger 3-9
Hardware Browser 3-5
hardware triggering 3-17
IAT file 3-34
Logging 3-13
manual triggering 3-16
Memory Logging 3-14
opening 3-2
Preview window 3-25
previewing data 3-27
Region of Interest (ROI) 3-18
saving configurations 3-34
selecting device 3-5
selecting format 3-5
Triggering 3-15
troubleshooting bad images 3-31
using a camera file 3-7

Image Acquisition Tool desktop 3-2
Image Acquisition Toolbox GUI 3-1 to 3-2
image data

importing into a Simulink model 8-1
image frames

bringing into the workspace 6-2
determining acquisition time 6-21
determining dimensions of 6-13
memory usage 5-34

image objects
using as preview windows 2-12

Image Processing Toolbox 1-3 2-4

Index-4

Index

images
acquiring 5-2
color spaces of acquired data 6-17
determining dimensions of 6-13
determining how many are available 5-24
determining how many have been

acquired 5-22
extracting from memory 6-3
logging to disk 5-39
memory usage 5-34
retrieving acquired images 6-2
specifying how many to acquire 5-20
viewing acquired data 6-19
waiting for an acquisition to complete 5-30

imaging boards 2-2
troubleshooting 10-2

imaqcallback function
using default callback function 7-2

imaqfind function 12-16
using 4-27

imaqhelp function 12-18
getting property information 4-20

imaqhwinfo function 12-20
using 4-2

imaqmem function 12-24
using 5-34

imaqmontage function 12-27
imaqreset function 12-29
imaqsupport function 10-26
imaqtool 3-2
imaqtool function 12-30
immediate triggers

defined 5-8
example 5-10

InitialTriggerTime property 14-19
using 6-20

islogging function 12-31
isrunning function 12-33
isvalid function 12-35

L
load function 12-36
Logging 3-13
logging image data

to disk 5-39
Logging property 14-21
logging state

overview 5-2
logging to AVI file 3-14
LoggingMode property 14-22

M
manual triggering 3-16
manual triggers

defined 5-8
example 5-12

Matrox devices
determining driver version 10-17
troubleshooting 10-16

Matrox MIL Configuration utility
using 10-17

memory buffer
determining number of frames in 5-24
emptying 5-36

Memory Logging 3-14
memory usage

monitoring 5-34
Microsoft DirectX

find version 10-23

N
Name property 14-24
National Instruments devices

determining driver version 10-21
troubleshooting 10-20

native data type
finding 4-15

Number of Triggers 3-16

Index-5

Index

NumberOfBands property 14-25

O
obj2mfile function 12-37
opening Image Acquisition Tool 3-2
overloaded functions 11-5

P
Parent property 14-27
peekdata function 12-41

using 6-6
using before a trigger 6-8

preview function 12-43
using 2-10

Preview window 3-25
previewing

closing the preview window 2-12
creating custom preview GUIs 2-12
opening the Video Preview window 2-10
performing custom processing 2-14
stopping the preview video stream 2-11

previewing data 3-27
Previewing property 14-28
properties

determining their value 4-19
getting information about 4-20
of image acquisition objects 4-16

propinfo function 12-48
getting property information 4-20

Q
QImaging devices

determining driver version 10-19
troubleshooting 10-18

R
refreshing hardware 3-6

region of interest (ROI)
specifying 14-30

Region of Interest (ROI) 3-18
ReturnedColorSpace property 14-29
ROIPosition property 14-30
Running property 14-32
running state

description of 4-23

S
save function 12-50
saving Image Acquisition Tool

configurations 3-34
Selected property 14-33
SelectedSourceName property 14-35
selecting a device in the GUI 3-5
set function 12-52

using 4-20
Source property 14-36
SourceName property 14-38
start events

callback function property 14-39
definition 7-5
information returned 7-8

start function 12-54
StartFcn 7-12
StartFcn property 14-39
stop events

callback function property 14-40
definition 7-5
information returned 7-8

stop function 12-56
StopFcn 7-12
StopFcn property 14-40
stoppreview function 12-57
synchronizing acquisition

example 5-15
system requirements

image acquisition 2-4

Index-6

Index

T
Tag property 14-41
television tuner boards

support for 2-4
time-based acquisition 6-5
Timeout property 14-42
timer events

definition 7-6
example 7-18
information returned 7-9

TimerFcn 7-12
TimerFcn property 14-43
TimerPeriod property 14-44
timers

specifying period of 14-44
specifying with image acquisition 14-43

timing of acquisition
retrieving 6-20

trigger events
definition 7-6
information returned 7-8
specifying callback function 14-47

trigger function 12-58
Trigger Type 3-16
TriggerCondition property 14-45

configuring 5-6
triggerconfig function 12-59
TriggerFcn 7-12
TriggerFcn property 14-47
TriggerFrameDelay property 14-48

using 5-27
triggerinfo function 12-62
Triggering 3-15
TriggerRepeat property 14-50

using 5-28

triggers
configuring 5-3
configuring repeating triggers 5-28
controlling acquisition parameters 5-19
determining execution time 6-20
hardware 5-15
immediate 5-10
manual 5-12
specifying properties 5-5
specifying the type 5-8
specifying when they occur 14-45
types of 5-8

TriggersExecuted property 14-51
TriggerSource property 14-52

configuring 5-6
TriggerType property 14-53

configuring 5-6
types of triggers 5-8

troubleshooting
image acquisition hardware 10-2

troubleshooting bad images 3-31
TV tuner boards

support for 2-4
Type property 14-55

U
update preview window function

creating 2-14
specifying 2-16

USB
image acquisition devices 2-2

user interface 3-1
UserData property 14-56

V
vendor adaptors

definition 4-2

Index-7

Index

video
importing into a Simulink model 8-1

video cameras 2-2
setting up 2-6
troubleshooting 10-2

video formats
specifying 4-11
specifying with device configuration

files 4-13
video input objects

defined 4-8
getting information about 4-15
running state 14-32
starting 4-23
state 4-23
stopping 4-23
viewing current state 4-10

Video Preview window
closing 2-12
opening 2-10
stopping the preview video stream 2-11
troubleshooting 10-25

video source objects
array of 14-36
currently selected source 14-33
displaying list of 4-14
names of 14-38
relation to video input objects 4-8
specifying selected object 4-14

VideoFormat property 14-57
videoinput function 12-64

using 4-8
VideoResolution property 14-59
viewing images 6-19

W
wait function 12-67

using 5-30
waiting for an acquisition to complete 5-30
webcams

support for 2-4
winvideo adaptor

troubleshooting hardware 10-22

Index-8

	toc
	Getting Started
	Product Overview
	Introduction
	Installation and Configuration Notes
	The Image Processing Toolbox Software Required to Use the Image
	Related Products
	Supported Hardware

	Image Acquisition Tool (GUI)
	Basic Image Acquisition Procedure
	Overview
	Step 1: Install Your Image Acquisition Device
	Step 2: Retrieve Hardware Information
	Determining the Adaptor Name
	Determining the Device ID
	Determining the Supported Video Formats

	Step 3: Create a Video Input Object
	Viewing the Video Input Object Summary

	Step 4: Preview the Video Stream (Optional)
	Step 5: Configure Object Properties (Optional)
	Types of Image Acquisition Objects
	Viewing Object Properties
	Setting Object Properties

	Step 6: Acquire Image Data
	Running the Example
	Image Data in the MATLAB Workspace

	Step 7: Clean Up

	Introduction
	Overview
	Introduction
	Toolbox Components
	The Image Processing Toolbox Software Required to Use the Image
	The Image Acquisition Tool (GUI)
	Supported Devices

	Setting Up Image Acquisition Hardware
	Introduction
	Setting Up Frame Grabbers
	Setting Up Generic Windows Video Acquisition Devices
	Setting Up DCAM Devices
	Resetting Your Image Acquisition Hardware
	A Note About Frame Rates and Processing Speed

	Previewing Data
	Introduction
	Opening a Video Preview Window
	Stopping the Preview Video Stream
	Closing a Video Preview Window
	Previewing Data in Custom GUIs
	Performing Custom Processing of Previewed Data
	Creating the Update Preview Window Function
	Specifying the Update Preview Function

	Using the Image Acquisition Tool GUI
	The Image Acquisition Tool Desktop
	Opening the Tool
	Parts of the Desktop

	Selecting Your Device
	Selecting a Device and Format
	Adding New Hardware
	Using a Camera File

	Setting Acquisition Parameters
	Using the Acquisition Parameters Pane
	Setting Frames Per Trigger
	Setting the Color Space
	Setting Device-Specific Parameters
	Logging Your Data
	Memory Logging
	Disk Logging

	Setting Up Triggering
	Selecting the Number of Triggers
	Selecting the Trigger Type

	Setting a Region of Interest
	Setting Region of Interest Manually
	Setting Region of Interest Interactively

	Previewing and Acquiring Data
	The Preview Window
	Previewing Data
	Acquiring Data
	If Images Are Blurry or Dark

	Exporting Data
	Saving Image Acquisition Tool Configurations
	Exporting Hardware Configurations to MATLAB

	Connecting to Hardware
	Getting Hardware Information
	Getting Hardware Information
	Determining the Device Adaptor Name
	Determining the Device ID
	Getting More Information About a Particular Device

	Determining Supported Video Formats

	Creating Image Acquisition Objects
	Types of Objects
	Video Input Objects
	Video Source Objects
	Creating a Video Input Object
	Viewing a Summary of a Video Input Object

	Specifying the Video Format
	Using a Video Format String
	Using Device Configuration Files (Camera Files)

	Specifying the Selected Video Source Object
	Getting Information About a Video Input Object

	Configuring Image Acquisition Object Properties
	About Image Acquisition Object Properties
	Viewing the Values of Object Properties
	Viewing the Properties of a Video Source Object

	Viewing the Value of a Particular Property
	Getting Information About Object Properties
	Setting the Value of an Object Property
	Viewing a List of All Settable Object Properties
	Setting Trigger Properties

	Starting and Stopping a Video Input Object
	Deleting Image Acquisition Objects
	Saving Image Acquisition Objects
	Using the save Command
	Using the obj2mfile Command

	Acquiring Image Data
	Data Logging
	Overview
	Trigger Properties

	Setting the Values of Trigger Properties
	About Trigger Properties
	Specifying Trigger Type, Source, and Condition
	Determining Valid Configurations
	Configuring Trigger Type, Source, and Condition Properties

	Specifying the Trigger Type
	Comparison of Trigger Types
	Example: Using an Immediate Trigger
	Example: Using a Manual Trigger
	Example: Using a Hardware Trigger

	Controlling Logging Parameters
	Data Logging
	Specifying Logging Mode
	Specifying the Number of Frames to Log
	Specifying a Noncontiguous Acquisition

	Determining How Much Data Has Been Logged
	Example: Acquiring 100 Frames

	Determining How Many Frames Are Available
	Delaying Data Logging After a Trigger
	Specifying Multiple Triggers

	Waiting for an Acquisition to Finish
	Using the wait Function
	Example: Blocking the Command Line Until an Acquisition Complete

	Managing Memory Usage
	Memory Usage
	Monitoring Memory Usage
	Modifying the Frame Memory Limit
	Freeing Memory

	Logging Image Data to Disk
	Logging Data to Disk
	Creating an AVI File Object for Logging
	Logging Grayscale Images
	Guidelines for Using an AVI File Object to Log Image Data
	Closing the DiskLogger AVI file

	Example: Logging Data to Disk

	Working with Acquired Image Data
	Overview
	Bringing Image Data into the MATLAB Workspace
	Overview
	Moving Multiple Frames into the Workspace
	Example: Acquiring 10 Seconds of Image Data

	Viewing Frames in the Memory Buffer
	Bringing a Single Frame into the Workspace

	Working with Image Data in the MATLAB Workspace
	Understanding Image Data
	Determining the Dimensions of Image Data
	ROIs and Image Dimensions
	Example: Video Format and Image Dimensions

	Determining the Data Type of Image Frames
	Specifying the Color Space
	Viewing Acquired Data

	Retrieving Timing Information
	Introduction
	Determining When a Trigger Executed
	Determining When a Frame Was Acquired
	Getting the Relative Acquisition Time
	Getting the Absolute Acquisition Time

	Example: Determining the Frame Delay Duration

	Using Events and Callbacks
	Example: Using the Default Callback Function
	Event Types
	Retrieving Event Information
	Introduction
	Event Structures
	Data Fields for Start, Stop, Frames Acquired, and Trigger Events
	Data Fields for Error Events
	Data Fields for Timer Events

	Example: Accessing Data in the Event Log

	Creating and Executing Callback Functions
	Introduction
	Creating Callback Functions
	Example: Writing a Callback Function

	Specifying Callback Functions
	Using a Text String to Specify Callback Functions
	Using a Cell Array to Specify Callback Functions
	Using Function Handles to Specify Callback Functions
	Specifying a Toolbox Function as a Callback
	Disabling Callbacks

	Example: Viewing a Sample Frame
	Example: Monitoring Memory Usage
	Creating the Memory Monitor Callback Function
	Running the Example

	Using the From Video Device Block in Simulink
	Overview
	Opening the Block Library
	Using the imaqlib Command
	Using the Simulink Library Browser

	Example: Saving Video Data to a File
	Introduction
	Step 1: Open the Image Acquisition Toolbox Library
	Step 2: Open a Model or Create a New Model
	Step 3: Drag the From Video Device Block into the Model
	Step 4: Drag Other Blocks to Complete the Model
	Step 5: Connect the Blocks
	Step 6: Specify From Video Device Block Parameter Values
	Step 7: Run the Simulation

	Adding Support for Additional Hardware
	Overview
	For More Information

	Troubleshooting
	Overview
	Troubleshooting DALSA Coreco IFC Hardware
	Troubleshooting DALSA Coreco IFC Devices
	Determining the Driver Version for DALSA Coreco IFC Devices

	Troubleshooting DALSA Coreco Sapera Hardware
	Troubleshooting DALSA Coreco Sapera Devices
	Determining the Driver Version for DALSA Coreco Sapera Devices

	Troubleshooting Data Translation Hardware
	Troubleshooting DCAM IEEE 1394 (FireWire) Hardware
	Troubleshooting DCAM IEEE 1394 Hardware
	Installing the CMU DCAM Driver
	Installing the Driver

	Running the CMU Camera Demo Application

	Troubleshooting Hamamatsu Hardware
	Troubleshooting Matrox Hardware
	Troubleshooting Matrox Devices
	Determining the Driver Version for Matrox Devices

	Troubleshooting QImaging Hardware
	Troubleshooting QImaging Devices
	Determining the Driver Version for QImaging Devices

	Troubleshooting National Instruments Hardware
	Troubleshooting National Instruments Devices
	Determining the Driver Version for National Instruments Devices

	Troubleshooting Windows Video Hardware
	Troubleshooting Windows Video Devices
	Determining the Microsoft DirectX Version

	Troubleshooting a Video Preview Window
	Contacting The MathWorks and Using the imaqsupport Function

	Function Reference
	General-Purpose Objects
	Triggering
	Data
	Tools
	Getting Command-Line Function Help

	Functions — Alphabetical List
	Property Reference
	Video Input Objects
	General
	Callback
	Triggering
	Acquisition Source

	Video Source Objects

	Properties — Alphabetical List
	Examples
	Fundamentals
	Previewing
	Image Acquisition Tool (GUI)
	Acquiring Image Data
	Working with Acquired Data
	Events and Callbacks

	Index

	tables
	Comparison of Trigger Types
	Frame Metadata
	Events and Callback Function Properties

